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COMPUMAG 2003 Chairman’s Welcome

Welcome to COMPUMAG 2003, the 14th Conference on the Computation of Electric
and Magnetic Fields!

In the 27 years since the first COMPUMAG Conference in 1976 at Oxford, we have
seen the society and the conference continue to grow in numbers, in significance and in
international renown and respect. We are honored, therefore, to carry on what has
become a well-established tradition of presenting the leading research and thought in the
area of computational electromagnetics.

Because of its high standards and rigorous review process, the Conference has become the
place to present in our field. This year 429 papers were approved for presentation in 8
oral sessions and 32 poster sessions. The contributors represent 30 different countries.
Our deep thanks go to the editorial board and to the co-chairs Jon Webb and Dennis
Giannacopoulos, who did an outstanding job.

And welcome to Saratoga Springs, New York! Those of us fortunate to live and work in
New York’s Capital District can take advantage of some of the best opportunities in the
United States for research and education; cultural, historical and recreational resources;
and small cities and towns where neighbors still don’t lock their doors. Nearby research
institutions and universities include Rensselaer, GE Global Research Laboratories, Knolls
Atomic Power Laboratory, IBM Research Laboratory and others. New York City,
Boston, and Montreal, with their rich historical and cultural resources, are all within a
few hours’ drive. Finally, there is the peace and friendliness of smaller towns and villages,
like Saratoga Springs, where you are sure to enjoy the activities we have planned; we
hope you will also take time to explore on your own.

COMPUMAG 2003 offers lively scientific exchange to charm the intellect and convivial
activities to warm the heart. Welcome!

Prof. Sheppard J. Salon

COMPUMAG 2003 Chairman
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COMPUMAG 2003 Technical Program 

Thursday, July 17, 2003 
 
 
 

 8:00 – 10:15 

Oral Session  

 
Inverse Problems 
Saratoga Ballroom 

 10:45 – 12:00 

Poster Session  

 
Numerical Techniques IV: Solution of Matrix Equations and 
Error Estimation 

 Coupled Problems IV: MHD and Flow 

 Machines IV: Special Topics 

 Devices IV 

 1:30 – 2:45 

Poster Session  

 Optimization IV 

 Materials II 

 Education – TEAM 

 Quasistatic III: Eddy Currents: Applications 

 3:15 – 5:30 

Oral Session  

 
Optimization 
Saratoga Ballroom 

 
 
 
 



Inverse Problems Chairman
Thursday, July 17, 8:00am - 10:15am Dr. Song-yop Hahn

Inverse Electromagnetic Problems by Field Visualization IV - 2
Iliana Marinova, Hisashi Endo, Seiji Hayano, Yoshifuru Saito P76823
Technical University of Sofia
Sofia - Bulgaria  
  
A new method for choosing the regularization parameter in time
dependent inverse problems IV - 4

Jörg Schreiber, Jens Haueisen, Jukka Nenonen P34018
University Jena - Biomagnetic Center
Jena - Germany  
  
Multiresolutive Reconstruction of Magnetoencephalography Source
Distribution IV - 6

Chang-Hwan Im, Hyun-Kyo Jung, Hyuk-Chan Kwon, Yong-Ho Lee P13702
Seoul National University - School of Electrical Engineering and Computer Science
Seoul - Korea  
  
Identification of Multiple Cracks from Eddy Current Testing Signal with
Noise Source by Image Processing and Inverse Analysis IV - 8

Yoshiaki Nagaya, Toshiyuki Takagi, Tetsuya Uchimoto, Haoyu Huang P52282
Tohoku University - Institute of Fluid Science
Sendai - Japan  
  
A Condition-Number Based Regularization Parameter Estimate for
Reconstruction Problems IV - 10

Bernhard Brandstätter, Gert Holler, Daniel Watzenig P54635
Graz University of Technology - Inst. of Electrical Measurement and Measurement Signal
Processing
Graz - Austria

 

  
Topology-Based Inequalities and Inverse Problems for Near Force-Free
Magnetic Fields IV - 12

P. Robert Kotiuga P35546
Boston University - Department of Electrical and Computer Engineering
Boston, MA - USA  

Numerical Techniques IV: Solution of matrix equations and
error estimation Chairmen

Thursday, July 17, 10:45am - 12:00pm Dr. Charles T. Choi
Dr. Xavier Marechal

An efficient preconditioner for linear systems issued from the Finite
Element Method for scattering problems IV - 14

Ronan Perrussel, Laurent Nicolas, François Musy P61962
Ecole Centrale de Lyon - CEGELY
Ecully - France  

Saratoga Springs, New York USA 
July 13 - 17, 2003
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A Clustering Algorithm for Multi-Level Fast Multipole Methods IV - 16
K. Barakat, J.P. Webb P51065
McGill University
Dept. of Elec. and Comp. Engineering
Montreal - Canada

 

  
Geometric Multigrid Algorithms Using the Conformal Finite Integration
Technique IV - 18

Markus Clemens, Stefan Feigh, Thomas Weiland P32220
TU Darmstadt - FG Theorie Elektromagnetischer Felder
Darmstadt - Germany  
  
A New Method for Solving Linear Equations with Large Sparse
Symmetric and Non-positively Definite Coefficient Matrix IV - 20

Jinming Wang, Dexin Xie, Yingying Yao P33136
Shenyang University of Technology - School of Electrical Engineering
Shenyang - China  
  
Comparison of linear systems solvers on 3-D transient electromagnetic
problems IV - 22

Grégory Vincent, Marta Costa Bouzo, Christophe Guérin, Jean-Louis
Coulomb P43856
CEDRAT S.A.
Meylan - France  
  
Solving Linear FEM Problems Using Hopfield Neural Network IV - 24
Miklós Kuczmann, Amália Iványi P93964
Budapest University of Technology and Economics - Dept. of Electromagnetic Theory
Budapest - Hungary  
  
Error Estimation in the context of Numerical Optimization of
Electromagnetic Systems IV - 26

S. Vivier, M. Hecquet, P. Brochet P33967
Ecole Centrale de Lille
Villeneuve d'Ascq - France  
  
GMRES with New Preconditioning for Solving BEM-Type Linear System IV - 28
Ayumu Saitoh, Atsushi Kamitani P63590
Yamagata University - Faculty of Engineering
Yamagata - Japan  
  
Iterative Solution for Linear System Obtained by Meshless Approach IV - 30
Soichiro Ikuno, Ayumu Saitoh, Atsushi Kamitani P34630
Tokyo University of Technology
Tokyo - Japan  
  
Estimation of numerical errors due to time and space discretisations IV - 32
T. Henneron, S. Clénet, Francis Piriou P14869
ENSAM, L2EP
Lille - France  
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Investigation of Parallel Multigrid Method Using Java Language IV - 34
Kota Watanabe, Hajime Igarashi, Toshihisa Honma P25607
HOKKAIDO University - Graduate School of Engineering
Sapporo - Japan  
  
Solution of a Magnetostatic Problem Using an Inexact Newton Method IV - 36
Carlo A. Borghi, Mario R. Carraro, Andrea Cristofolini P55776
University of Bologna - Dipartimento di Ingegneria Elettrica
Bologna - Italy  
  
An Experimental Study of Equivalence Phenomena for Field
Discontinuity and Optimal Discretizations in Finite Element Adaption IV - 38

Dennis Giannacopoulos P76807
McGill University - Electrical & Computer Engineering Dept.
Montreal - Canada  

Coupled Problems IV: MHD and Flow Chairman
Thursday, July 17, 10:45am - 12:00pm Dr. Kent Davey

Multi-Grid Method for Eigenvalue Problem Associated with Newcomb
Equation IV - 40

Takashi Kanki P21114
Japan Coast Guard Academy
Kure - Japan  
  
Electromagnetic Analysis of the 3D Effects of the Metallic Structures in
JET Tokamak IV - 42

R. Albanese, Guglielmo Rubinacci, Fabio Villone P31884
Ass. EURATOM/ENEA/CREATE, DAEIMI - Universita' di Cassino
Cassino - Italy  
  
Equilibrium shape of a liquid metal subject to electromagnetic forces IV - 44
R. Moretti, S. Dufour, G. Vinsard, B. Laporte P11290
GREEN INPL
Vandoeuvre-les-Nancy - France  
  
Investigation on Couple Electric Field and Flow Field in High Voltage
SF6 Circuit Breaker IV - 46

Xiaoming Liu, Erzhi Wang, Yundong Cao P62785
Shenyang University of Technology - Department of Electrical Engineering
Shenyang - China  
  
A Finite Element Analysis of Surface Wave Plasmas IV - 48
Hajime Igarashi, K. Watanabe, T. Ito, T. Fukuda, Toshihisa Honma P94342
Hokkaido University - Graduate School of Eng., System & Information Eng.
Sapporo - Japan  
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3-D MHD Calculation that has considered the Alternating
electromagnetic force IV - 50

Shouji Satoh, Keisuke Fujisaki, Tatsuya Furukawa P35126
Ohita Setubi Sekkei Corp.
Ohita - Japan  
  
Influence of Model Parameters on 3D Turbulent Flow in an
Electromagnetic Stirring System for Continuous Billet Casting IV - 52

J.D. Lavers, G. Tallbäck, A. Erraki, L. Beitelman P45536
University of Toronto - ECE Department
Toronto, ON - CANADA  
  
Numerical Solution of the Non Linear Electrodynamics in MHD Regimes
with Magnetic Reynolds Number near One IV - 54

Carlo A. Borghi, Mario R. Carraro, Andrea Cristofolini P35377
University of Bologna - Dipartimento di Ingegneria Elettrica
Bologna - Italy  

Machines IV: Special Topics Chairmen

Thursday, July 17, 10:45am - 12:00pm Dr. Dave Lowther
Dr. CC Hwang

Investigation of Benchmark Model for Estimating Iron Loss in Rotating
Machine IV - 56

Hideo Domeki, Yoshiyuki Ishihara, Chikara Kaido, Yoshihiro Kawase,
Shingo Kitamura, Tohru Shimomura, Norio Takahashi, Takashi Yamada,
Katsumi Yamazaki

P11181

Okayama University - Dept. Electrical and Electronic Eng.
Okayama - Japan  
  
Numerical Analysis of Coupling 2-D EM Field and Circuits for
Rectification Synchronous Generator Taking Account Slot-Skewed IV - 58

Huaishu Li, Langru Li P43613
Huazhong University of Science & Technology(HUST)
Wuhan - China  
  
Representation of Laminated and Slotted Configurations in the Finite
Element Analysis of Electrical Machines and Transformers IV - 60

Erich Schmidt P83925
Vienna University of Technology - Institute of Electrical Drives and Machines
Vienna - Austria  
  
Impact of Magnetic Nonlinearities and Cross Coupling Effects on
Properties of Radial Active Magnetic Bearings IV - 62

Boštjan Polajžer, Gorazd Štumberger, Jože Ritonja, Drago Dolinar, Kay
Hameyer P13047
Faculty of Electrical Engineering and Computer Science
Maribor - Slovenia  
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Analysis of Far Field of Permanent Magnet Synchronous Machines IV - 64
O-Mun Kwon, M.V.K. Chari, Sheppard J. Salon, Kiruba Sivasubramaniam P73976
Rensselaer Polytechnic Institute
Troy, NY - USA  
  
Design and Analysis of Axial-flux Type Permanent Magnet Synchronous
Generator for Wind Power System IV - 66

Don-Ha Hwang, Do-Hyun Kang, Yong-Joo Kim, Sung-Woo Bae, Dong-Hee
Kim, Kyeong-Ho Choi P14600
Korea Electrotechnology Research Institute (KERI) - Industry Applications Research
Laboratory
Changwon - Korea

 

  
An Application of Laurent Expansion of Air Gap Magnetic Field to
Optimizing Motor Geometry with Partially Saturated Iron Core IV - 68

Masashi Kitamura, Noriaki Hino, Fumio Tajima P74708
Hitachi, Ltd. - Hitachi Research Laboratory,
Hitachi - Japan  
  
Design and Performance Evaluation of a Linear Micro Switched-
Reluctance Motor IV - 70

Cheng-Tsung Liu, Da-Chen Pang, Tsung-Shiun Chiang P74320
National Sun Yat-Sen University - Department of Electrical Engineering
Kaohsiung - Taiwan  
  
Optimal Design of Extremely Small Thrust VCM for Nanoindenter IV - 72
J.H. Cho, B.I. Kwon, K.I. Woo, Y.M. You P74447
Hanyang University - Energy Conversion System Lab
Ansan - South Korea  
  
Design of the Magnetizing System for a Rotor with Surface-mounted
NdFeB Permanent Magnets IV - 74

Y.H. Jeong, D.H. Kang, S.J. Jung, Paul Curiac, Seok Myeong Jang P24950
Korea Electrotechnology Research Institute
Changwon - South Korea  
  
The Influence of Magnetization Pattern on the Performance of
Permanent Magnet Eddy Current Couplings and Brakes IV - 76

Sung Ho Lee, Han Wook Cho, Sung Kook Cho, Seok Myeong Jang P75909
Chungnam National University - Dept. of Electrical Engineering
Daejeon - Korea  
  
Characteristics of Rotor Losses in High Speed Motor/Generator IV - 78
Seok Myeong Jang, Han Wook Cho, Sung Ho Lee, Sung Kook Cho P35310
Chungnam National University - Dept. of Electrical Engineering
Daejeon - Korea  
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Characteristic analysis of eddy current coupling by finite element method
considering rotor pole shape and copper-faced drum IV - 80

Seok Myeong Jang, Seong Kook Cho, Sung Ho Lee, Han Wook Cho P75311
Chungnam National University - Dept. of Electrical Engineering
Daejeon - Korea  
  
Some Tricks for Modelling Rotating Electrical Machines Using Finite
Elements IV - 82

D. Rodger, H.C. Lai, R.J. Hill-Cottingham P55113
University of Bath - Department of Electronic and Electrical Engineering
Bath - UK  

Devices IV Chairman
Thursday, July 17, 10:45am - 12:00pm Dr. Jozsef Pavo

Design and Dynamic Analysis of permanent Magnetic Actuator for
Vacuum Circuit Breaker IV - 84

S.L. Ho, Y. Li, X. Lin, J.Y. Xu, W.C. Lo, H.C. Wong P41346
Hong Kong Polytechnic University - Dept. of Electrical Engineering
Kowloon - Hong Kong  
  
Numerical Analysis of Transient Force and Eddy Current Loss in a 720
MVA Power Transformer IV - 86

S.L. Ho, Y. Li, H.C. Wong, S.H. Wang, R.Y. Tang P71147
Hong Kong Polytechnic University - Dept. of Electrical Engineering
Kowloon - Hong Kong  
  
Magnetic Force Computation in Permanent Magnets Using a Local
Energy Coordinate Derivative Method IV - 88

W.N. Fu, P. Zhou, D. Lin, S. Stanton, Zoltan J. Cendes P52569
Ansoft Corporation
Pittsburgh, PA - USA  
  
FEM Evaluation of Zero-phase sequence Characteristics of 3-ph 3-limb
Core-type Transformers IV - 90

Cesare Mario Arturi, Luca Di Rienzo P73616
Politecnico di Milano - Dipartimento di Elettrotecnica
Milano - Italy  
  
Design of Optical Pickup Actuator Using Multi-Pole Magnet for High
Performance IV - 92

In-Ho Choi, Sam-Nyol Hong, Gina Kim, Jin-Yong Kim P53097
DCT Group - Digital Media Research Lab.
Seoul - Korea  
  
Characteristic Analysis and Modification of PM-type Magnetic Circuit
Breaker IV - 94

K.I. Woo, B.I. Kwon, H.D. Jun P84201
Pukyong National University - Division of Electrical, Control and Instrument Engineering
Busan - Korea  
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Local Electric Field Analysis for Evaluation of Charge Transfer System
Using Sequential Sub-window Technique IV - 96

Joon-Ho Lee, Young-Ki Chung, Il-Han Park P44174
Sungkyunkwan University - School of Information and Communication Eng.
Suwon - Korea  
  
Electrostatic Comb Accelerometer - Filed and Equivalent Circuit
Modeling IV - 98

Sławomir Wiak, Krzysztof Smółka P14784
Technical University of Lodz - Institute of Electrical Machines and Transformers
Lodz - Poland  

Optimization IV Chairman
Thursday, July 17, 1:30pm - 2:45pm Dr. Nathan Ida
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Inverse Electromagnetic Problems by Field Visualization  
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Abstract– The current distribution is of main importance for testing and 
inspecting of many devices as printed circuit boards, motherboards of 
personal computers etc. The determination of current distribution is a 
main inverse electromagnetic problem. The visualization technique is 
applied to determine the current distribution by locally measured 
magnetic field. The image of the field distribution is processed using field 
theory. The color source densities have been evaluated from the color 
distributions of the field data set. It was found that the color source 
distribution corresponds to the current distribution. Generating new 
color distribution with obtained color source densities can essentially 
reduce the noise of the measured field data. With the proposed approach 
the quality of the images can be essentially improved. The results 
obtained show that the current distribution can be obtained and 
analyzed using visualized information of the field distribution.  

INTRODUCTION

Magnetic field distribution is very important considering 
many inverse electromagnetic problems – identification, NDT, 
ECT etc. Usually magnetic field is measured over the parallel 
surfaces during the testing and inspection of the devices as a 
printed current boards (PCBs), motherboards of personal 
computers etc. The determination of the current distribution is 
reduced to the main inverse electromagnetic problem of the 
two dimensional currents searching on a flat surface. Recently, 
many different techniques are proposed to solve that problem 
[1-4]. The locally measured magnetic field is used to 
determine the current distribution. The field visualization 
facilitates modeling and analysis of the electromagnetic 
phenomena and processes. In this paper, the field theory is 
applied over the image, visualizing the field distribution. The 
color source distribution is obtained using the image color 
model. The color source distribution corresponds to the 
current distribution. Thus, visualizing the color source 
distribution it is possible to visualize the current distribution. 
The measured field database is usually insufficient or the data 
are accompanied with noise. Using the image color model 
and solving the inverse problem over the image it is possible 
to improve the quality and to change the characteristics of the 
image [5]. The Generalized Vector Sampled Pattern Matching 
method is applied to solve an ill posed linear system of 
equations. The new color distributions are generated using the 
obtained color source densities. 

IMAGE COLOR MODEL OF THE FIELD DISTRIBUTION

  The image is considered as 2D-distribution of color 
components – Red, Green, and Blue (RGB). Each color 
component A is expressed utilizing the appropriate Green 

function G  

dSGA
S
∫= σ

π4
1

   (1) 

The measured magnetic field densities B are presented by the 
x-, y- and z- components.  Applying the relation between 
vector potential A and flux density B

AB ×∇=    (2) 

Also, the components of the magnetic flux densities are 
determined utilizing the color source densities σ

σxx DB =    (3) 

σyy DB =    (4) 

σzz DB =    (5) 

where the Dx, Dy Dz represent the geometrical relations 
between pixels for corresponding components of the flux 
density.  
The color component source densities σ are determined 
solving the system of equations,            

YCX =    (6) 

where C , Y  and X are the n by m system matrix, n-th 
order column vector of the color component and m-th order 
column vector of unknown color source densities, 
respectively. For image processing the color components as 
well as color source densities have to be determine in the x-, 
y-pixels of the image. The RGB color components are 
separated. The systems of equations (6) are solved by 
Generalized Vector Sampled Pattern Matching method 
(GVSPM) [2]. Visualized color source distribution 
corresponds to the current distribution. Thus, applying the 
field theory over the image of the field distribution, it is 
possible to determine the corresponding current distribution 
by solving inverse electromagnetic problem. In order to 
improve the image of measured field distribution the inverse 
problem for color source density distribution at high 
resolution is formulated and solved. The new visualization of 
the color distributions is carried out from the evaluated color 
source densities. Thus, quality of the field distribution can be 
enhanced and the noise to be essentially reduced.  
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APPLICATION

The magnetic field is measured over the parallel surface of 
the single circle coil shown in Fig. 1. The inner and outer 
diameters are d1=0.02m and d2=0.025m, respectively. The 
height is h=0.005m. The components of the magnetic field 
densities Bx and By measured on the parallel surface over the 
coil are visualized and shown in Fig. 2. The Red, Green and 
Blue components are separated and presented in Fig. 4 and 
Fig. 5. Solving the system of equations (6) for each color 
component - RGB, the color source density distributions are 
obtained. The Generalized Vector Sampled Pattern Matching 
method is applied to solve an ill posed linear system of 
equations of the corresponding inverse image problem. The 
color source distribution is visualized and shown in Fig. 3. It 
was found that the color source distribution corresponds to 
the searched current distribution. 

Fig. 1 Single circle coil 

(a) Bx (b) By

Fig. 2. Magnetic field density distribution   
(measured data of x- and y-components) 

Fig. 3 Current  
distribution 

Red Green Blue 

Fig. 4 Color component distribution of Bx

Red Green Blue 

Fig. 5 Color component distribution of By

In order to reduce the noise accompanying the measured field 
data an inverse color problem is formulated and solved over 
the images of the magnetic field distribution, shown in Fig, 

6(a) and Fig. 7(a). The obtained color source densities are 
used to generate new color distributions shown in Fig. 6(b) 
and Fig. 7(b). It was found that the quality of the images is 
essentially enhanced. 

(a) original - Bx (b) improved - Bx

Fig. 6. Original and improved image of magnetic field density distribution 
(x-components) 

(a) original - By (b) improved - By

Fig. 7. Original and improved image of magnetic field density distribution 
(y-components) 

CONCLUSION 

We have proposed a new inverse approach to determine and 
visualized the current distribution. The image processing 
technique using field theory was successfully applied for field 
visualization of electromagnetic devices. From the locally 
measured magnetic field distribution it is possible to obtain 
and visualized the corresponding current distribution. Solving 
the inverse color problem can essentially reduce the noise of 
the measured field data.   
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A new method for choosing the regularization parameter in time dependent inverse 
problems 

Jörg Schreiber1, Jens Haueisen1, Jukka Nenonen2

1 Biomagnetic Center, Department of Neurology, Friedrich-Schiller-University, Philosophenweg 3, 07743 Jena, Germany 
2 Laboratory of Biomedical Engineering, Helsinki University of Technology, P.O. Box 2200, 02015 HUT, Espoo, Finland

E-mail: haueisen@biomag.uni-jena.de

Abstract � The current density estimation on the epicardial surface of 
the heart based on electrocardiographic and magnetocardiographic 
measurements is one example of an ill-posed inverse problem. Commonly, 
zero-order Tikhonov regularization is applied to solve such problems. For 
the determination of the critical regularization parameter a few methods 
exist. However, none of these methods performed sufficiently in our 
application. In this paper, we propose a new method for choosing a 
regularization parameter for a time interval. Our basic assumption for this 
method is that the optimal solution norm must reflect the temporal 
properties of the magnetic energy. The performance of our method is 
tested both on simulated data and patient data.  

INTRODUCTION

Magnetocardiography (MCG) provides non-invasively 
information about the electrical activity of the heart [1]. 
Estimating and imaging the current density distribution on the 
epicardial surface of the heart can help diagnosing myocardial 
infarction and other heart diseases. The determination of this 
current density distribution requires the solution of an ill-posed 
inverse problem. Zero-order Thikonov regularization is a 
commonly applied technique for stabilizing such solutions and 
leads to the following minimization term 

2

2

2

2
2 jjB RL �����  , 

where B is measured magnetic field vector, L the lead-field 
(kernel) matrix, j the current density vector, R the regularization 
matrix, and � the regularization parameter. The equation states 
that both the residual norm (first term) and the solution norm 
(second term) should be minimized, whereby the regularization 
parameter acts as a weight between these terms. Specifying a 
reasonable value for � is often very difficult and a few, mainly 
empirical methods have been proposed [2, 3, 4, 5]. The L-curve 
[2] and the �2 [3] criteria are two most often used methods. 
However, none of these methods performed well in our 
application consisting of time interval source reconstructions in 
patients with myocardial infarction. 

Analyzing time intervals is of great importance in MCG (and 
also in magnetoencephalography, MEG). A possible approach 
is to determine the regularization parameter for every time 
point, but in many cases it is convenient to use a mean value for 
the entire interval. Based on the assumption that the solution 
should follow the properties of the magnetic energy of the 
signal, our aim was to develop an algorithm to determine the 
regularization parameter. 

METHODS

The new method The normalized mean global field power 
(MGFP) integral over a certain time interval in the original 
signal should be similar to the integral of the current density 
solution in the same time interval. Moreover, those parts in the 
MGFP signal containing zero signals should not contribute to 
the solution. Thus, we normalized both the MGFP and the 
current density solution, integrated all values above the 
respective noise levels (>3�), and plotted the two integrals for 
each � (Fig. 1). The optimal parameter was chosen empirically 
from the intersection of the tangent in the maximum curve slope 
and the MGFP integral (dotted line). 

Fig. 1. Normalized MGFP integral (dotted line) and current density solution 
integral (solid line) over the regularization parameter.  

In order to test our method, we performed simulations and 
analyzed patient data. We compared the results obtained with 

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



our method to the results obtained with often used the L-curve 
[2] and the �2 [3] criteria. 

Simulations We modeled the QRS interval of the human 
heart cycle with the help of 13 dipoles placed around the left 
ventricle (normal to its surface) representing the basal, medial 
and apical slice with each containing the four anatomical 
directions anterior, lateral, inferior and septal. The apex was 
represented by a separate dipole. Each dipole was fixed in 
direction and the strength varied over time with a Gaussian 
shape (maximum of 1 µAm), which was shifted for each dipole 
according to the measurements in [6]. For the field computation 
we used a high-resolution boundary element model including 
the torso (10 mm triangle side length), the lungs (6 mm) and the 
ventricles (3 mm) [7]. The magnetic field data were calculated 
in 64 magnetometers arranged in an 8-by-8 array in front of the 
torso. The forward calculated fields were disturbed with 

Gaussian noise using 3 different noise levels (0.01, 0.05, and 
0.1 pT) and provided the input to our minimum norm current 
density reconstruction (CDR). The optimal regularization 
parameter, �opt��was determined by comparing the strength of 
the solution from the CDR calculations with the strength of the 
original dipole distribution. We calculated both the correlation 
coefficient (CC) and the norm square error (NSE) between the 
values in each source point and for each time point. The optimal 
parameter results from the plot NSE versus 1-CC (Fig. 2). 

Patient data We tested our new method for determining �
with realistic MCG measurement data. Here, �opt�could be 
estimated by comparing the CDR with positron emission 
tomography (PET) data.  

RESULTS AND DISCUSSION

Simulations Although our newly proposed method 
performed better than the other methods, the �2 produced 
similar results (Table I). Since only Gaussian noise was used, a 
good performance of the �2 method was expected.  

TABLE  I. SIMULATION RESULTS

Noise level �opt �new �
2 [3] L-curve [2] 

0.01 fT 0.1 0.24 0.59 1.1e-16 
0.05 fT 0.5 1.83 4.18 2.08e-17 

0.1 fT 0.5 7.15 9.14 2.75e-16 

Patient data Again our method performed best (Table II), 
where the L-curve method gave only a one order of magnitude 
worse regularization parameter for this patient. The �2 method 
failed which is most likely due to the presence of non-Gaussian 
noise (inherent to real patient data).  

TABLE  II. PATIENT DATA RESULTS

�opt �new �
2 [3] L-curve [2] 

0.5 0.13 6.7e-8 0.015 

Further research will focus on the inclusion of a constraint 
for temporal smoothness of the solution. Moreover, spatial 
smoothness in the source space might give an additional 
constraint. 
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Abstract  In this paper, a new technique for multiresolutive 
reconstruction of magnetoencephalography(MEG) source distribution is 
proposed. By using the proposed technique, focal solution with higher 
energy density can be reconstructed and computational cost can be 
considerably reduced. Moreover, the approach is very easy to implement 
compared to conventional techniques. The usefulness of the proposed 
technique is verified by the application to a real head model.

INTRODUCTION

Reconstructing electric activity inside a brain using 
magnetic measurements outside of the head has attracted a 
great deal of interest. Usually, such a process is referred to as 
a magnetoencephalography (MEG) source reconstruction. 
There have been two source models used to reconstruct brain 
neural sources from MEG data. Those are usually referred to 
as a dipolar model and a cortically distributed source model. 
In the case of the dipolar model, parameters of equivalent 
current dipoles can be found by using optimization algorithms 
[1]. Although the method is very simple to apply, it has some 
critical disadvantages, in that the reconstructed dipoles may 
not be always located on the real cortical surface and the 
number of dipoles, i.e., the number of active areas, is not 
given as a priori. Conversely, the cortically distributed source 
model assumes that the dipoles are located perpendicularly to 
the cortical surface, and only their magnitudes are 
reconstructed [2]. Although it can solve the above problems 
relatively well, it suffers from great computational cost due to 
highly underdetermined relations between measured data 
(usually less than 300 sensors) and variables to be 
reconstructed (usually over 10000 cortical surface meshes). 
Moreover, conventional minimum norm least square (MNLS) 
approach provides very smooth-looking intensity patterns but 
fails to recover focal brain activities. 

Recently, multiresolutive reconstruction techniques have 
been proposed to reduce the search space around emerging 
active areas [3], [4]. Although they showed improved 
characteristics in reducing computational cost and finding 
focal solutions, they still have some problems, especially for 
their implementation. To implement the conventional 
methods, multigrid-type surface mesh should be used, which 
is very hard to generate on highly curved cortical surface. 
Moreover, ellipsoids used to restrict search spaces are not 
appropriate to apply to the curved cortical surface. 

                                                          
This work was supported in part by the NRL Project of the Ministry of 

Science and Technology, Korea. 

In this paper, an improved concept for the multiresolutive 
reconstruction is proposed. The proposed technique is very 
easy to implement because it is not a node-based but a region-
based technique. It uses hexahedra instead of ellipsoids to 
restrict the search spaces. Interesting regions with higher 
energy density are split into smaller hexahedra, whereas the 
others are not considered any more. By applying the process 
repeatedly, focal brain activations can be found with reduced 
computational cost. From the simulation for a real head 
model, the usefulness of the proposed method will be verified. 

METHODS

Cortically Distributed Source Reconstruction 

Brain neural activity is represented by continuous current 
flow, which is usually modelled as the distribution of discrete 
current dipole moments. The aim of the source reconstruction 
is to estimate the distribution on a brain cortex. The current 
dipole moments are located perpendicularly to the cortical 
surface. Because the directions of the dipoles are already 
determined, their magnitudes at each cortical surface mesh 
are variables to be reconstructed. 

A 122-channel SQUID (Superconducting Quantum 
Interference Device) magnetometer, capable of measuring 
normal component of magnetic field at each sensor, was used 
for simulation. Fig. 1 shows the positions of sensors and the 
brain cortex, extracted from MRI data. Magnetic flux density 
at each sensor was calculated using Sarvas’s formula, which 
assumes spherical volume conductor [5]. 

Fig. 1. Positions of SQUID magnetometers (Neuromag 122 channel) 

Multiresolutive Reconstruction Technique 

The unknowns to be reconstructed are the magnitudes of 
the current dipole moments at the center of each cortical mesh. 
The basic assumption of the proposed method is that the 
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meshes within a hexahedron have the same moment value. 
Fig. 2 shows the 2D schematic illustration to explain the 
proposed method. Processes for the method are as follows: 
Step 1) Generate initial hexahedra. Initial value is zero (0). 
Step 2) Calculate sensitivity for each hexahedron. Objective 
function to be minimized is defined as 

Ns

j
ejj BBF

1

2)(                            (1)

where, Ns is the number of sensors, and Bj and Bej represent 
the calculated and measured magnetic flux density at a sensor 
j, respectively. The value of sensitivity, dF/dQi, for each 
hexahedron is calculated analytically, where Qi is the moment 
value of i-th hexahedron, i=1,2, ,Nr (number of hexahedra). 
Step 3) Variables (moment values of each hexahedron) are 
updated using steepest decent updating scheme [6].  
Step 4) Repeat Step 2) – Step 4) until a newly calculated 
objective function decreases below a stopping criterion. 
Step 5) If reconstructed moment values of some hexahedra 
are below a predetermined threshold (0.1 maximum value is 
used in this paper), remove them from variables. Remained 
hexahedra are refined and resultant values from previous 
resolution are used for their initial values. Repeat Step 2) – 
Step 5) until satisfactory resolution is obtained. 

Fig. 2. 2D Schematic illustration to explain the proposed method 

RESULTS

Fig. 3 shows the positions of two original neural 
activations used for forward calculation. 20-dB Gaussian 
noise was added to the forward data. Fig. 4 (a), (b) show the 
reconstructed source distributions for the first and second 
resolution, respectively. We can see from the figure that focal 
distribution could be obtained by using higher resolution. To 
compare the results quantitatively, a measure, named as ,
was proposed to evaluate how well a method can find focal 
solution. It is defined as the ratio between original and 
reconstructed energy stored in activation areas. Table I shows 
the evaluated results. From the table, we can see that the 
results from the proposed technique yields more focal 
solution compared to those from conventional MNLS method. 
More results will be added in the full paper. 

CONCLUSION

In this paper, an improved concept for the multiresolutive 
reconstruction was proposed, which is very easy to implement 
compared to conventional approaches. From the simulation 
for a real head model, it was shown that focal brain 
activations could be found with reduced computational cost. 
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Fig. 3. Positions for two neural activation patches. 

                 (a)  First resolution                           (b) Second resolution 

Fig. 4. Reconstruction results for first and second resolution. Normalized 
values with same cutoff (cutoff = 0.3 maximum value). 

TABLE I. COMPARISON OF FOCAL CHARACTERISTICS

Methods   (activation region I)  (activation region II) 
MNLS 0.161 0.090 

Resolution I 0.279 0.082 
Resolution II 0.389 0.346 

Higher means the method can find more focal solution. 
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Abstract - This paper describes a novel method identifying the number 
and positions of cracks and reconstructing the crack shape. Using the ECT 
signal obtained by two-dimensional scanning as a picture image, a template 
matching method with help of genetic algorithms is applied to predict the 
number and positions of cracks. The present method employs a superposition 
of crack signals and a nonlinear scaling technique of a signal profile on crack 
length which are verified by numerical simulation. The number and positions 
of cracks are predicted sufficiently. Crack shape reconstructions from the 
predicted positions with help of inverse analysis are achieved with satisfactory 
accuracy.

INTRODUCTION

Eddy current testing (ECT) is used for the in-service 
inspection of tubes in steam generators of pressurized water 
reactor type nuclear plants. Requirement for testing is not only 
high sensitivity and detectability but also quantitative evaluation 
of position and shape of shallow cracks. The steam generator 
tubes are supported by support structures. The detection of the 
crack becomes difficult because the noise caused by the support 
structures is detected as ECT signals. 

To predict the number and positions of cracks, this paper 
proposes a method identifying the number and positions of cracks 
using the image processing of ECT signals. The method is 
verified through the application to an experimental ECT signal of 
multiple cracks. A template matching method, one of image 
recognition methods, is applied to reconstruction of multiple 
cracks in this study. The number and positions of cracks are 
predicted based on the two-dimensional scanning ECT signal as 
an image picture. The genetic algorithm (GA) is used as a search 
algorithm so as to improve the search efficiency. Finally crack 
shapes are reconstructed with help of inverse analysis using 
predicted positions of cracks by the image processing. 

DETAIL OF EXPERIMENT

The testpiece is a tube of INCONEL600 with 300 mm in 
length, 22.23 mm in the outer diameter, and 19.69 mm in the bore 
[1]. The support plate is a drilled-hole type of SS400 with 24.1 
mm in length, 40 mm in the outer diameter, and 22.7 mm in the 
bore [2]. This ferromagnetic support plate was installed on the 
testpiece as shown in Fig. 1.  

A differential TR (Transmit-Receive) probe developed by 
authors was used for this experiment [1]. This probe possesses the 
feature that the direction of defects can be identified. The 
parameters of the EC instrument were frequency of 200 kHz and 
400 kHz, and gains of 60 dB.  

The multiple frequency method [3] is used in an inspection 
to remove the noise caused by the support structure. This 

technique is expanding, rotating and subtracting the signals, 
scanned on the same part with two or more frequencies, on the 
complex plane. 

APPLICATION OF TEMPLATE MATCHING TO ECT SIGNAL

The template matching with help of GA [4] is applied to the 
reconstruction of multiple cracks. The expansion rate of the crack 
length and locations of the crack are expressed in the gene. The 
fitness is calculated by comparing signals of the template after 
transformation with signals of the input image at the location in 
the gene using a correlation coefficient. The gene with the highest 
fitness is supposed to indicate the position of the crack.  

In this study, the two assumptions are made on ECT signals. 
One is that multiple cracks signal can be expressed as a 
superposition of single crack signals. Another is that signals of 
cracks of any length can be scaled based on a template. The 
former assumption enables the searching another crack after one 
crack is detected. The latter is necessary to search for the various 
lengths cracks based on one kind of the template. These 
assumptions are verified through the numerical simulation. The 
reduced magnetic vector potential method based on edge element 
is used for forward analysis [5]. 

The assumption of the crack signals superposition is 
examined first. Two parallel cracks of OD (Outer Defect) 20% 
and OD40% were taken here. They have same length of 10 mm 
and width of 0.2 mm, and three patterns (1 mm, 2 mm and 3 mm 
intervals) were computed. Scanning line is across the centers of 
cracks. Examples of numerical results are shown in Fig. 2. The 
correlation coefficients between the superposition of single crack 
signals and two cracks signals are shown in Table I. It is possible 
to reproduce in very high accuracy in every case. Therefore it can 
be concluded that the assumption of crack signals superposition 
works out. 

Next, asumption of nonlinear scaling of crack length is 
examined. If the crack is long enough with respect to the probe, 
the signal of the center of the crack must be equal to the signal of 

Fig.1 The testpiece and the support plate 

Support plate

SG tube 
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the crack having infinite length. If the shape of the edge is the 
same, the signal of the edge of the crack must always be equal 
regardless of the crack length. Based on this intuitive 
consideration, a crack signal is supposed to change depending 
only on the length of the center part. When the crack increases in 
length, the signal of the center of the crack is expanded with the 
value of the center point. When decreasing oppositely, the center 
of signal is eliminated. Siganls of cracks with 3 mm, 7 mm and 
10 mm is transformed based on the signal of the crack of 5 mm in 
length. Three kinds of depth (OD20%, OD40% and OD60%) are 
examined. Scanning line is parallel to the crack. Examples of 
results are shown in Fig. 3. The correlation coefficients between 
scaled signals and signals computed directly are shown in Table 
II. It can be concluded that assumption of scaling of length gives 
good approximation. 

RESULTS OF IDENTIFICATION OF THE NUMBER AND POSITIONS OF CRACKS

Using the present method, the number and positions of the 
cracks are predicted based on ECT signals of multiple cracks 
sample. Fig. 4 shows results of identification of multiple cracks. 
The cracks are numbered by the sequence of the detection with 
the present method. In this search only circumferential cracks can 
be identified. 

As for R2 and R3, it can be judged that they are parts of a 
single crack and are named R2_3, since the coordinate of the 
axial direction of the crack is the same. It is found that R1 
corresponds to an actual crack #2, R2_3 to #1. The interval 
between R1 and R2_3 is 1.875 mm, and it agrees with the actual 
interval 2 mm between #1 and #2 well.  

RECONSTRUCTION OF CRACK SHAPES

Crack shapes were reconstructed based on positions of the 
cracks identified by the present method. Table III shows the 
shapes of the crack predicted by the inverse analysis [6]. Both 

length and depth of the cracks show an excellent agreement. 
These results imply that even if there are neighboring cracks, the 
crack shapes can be reconstructed. 

SUMMARY

The number and positions of cracks were predicted 
sufficiently with a template matching method with help of GA. 
The reconstructions of the crack shape by using positions of 
detected cracks were confirmed in high accuracy. 
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TABLE III. RECONSTRUCTION OF CRACK SHAPE
Detected No. R1 R2_3 

Depth (%) Estimated 44.7 29.5 
 True 44 21 
 Error +0.7 +8.5 

Length (mm) Estimated 5 11 
 True 4.6 10.3 
 Error +0.4 +0.7 

Slit No. #2 #1 
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TABLE I. CORRELATION COEFFICIENTS
Crack separation (mm) Correlation coefficient 

1 0.999775441 
2 0.999974335 
3 0.999994505 

TABLE II. CORRELATION COEFFICIENTS
Crack length (mm) Crack depth (%) Correlation coefficient 

20 0.993333741 
40 0.989545998 

3

60 0.985233249 
20 0.999426164 
40 0.999014043 

7

60 0.998457707 
20 0.998638175 
40 0.997277088 

10

60 0.995720769 
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A Condition-Number Based Regularization
Parameter Estimate for Reconstruction Problems

Bernhard Brandstätter, Gert Holler and Daniel Watzenig
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Abstract— In reconstruction (i. e. determining the model
states of a forward problem from measurements of model
outputs) one is often forced to search for a regularized solu-
tion due to poor sensitivity of model outputs with respect
to the model states. The amount of regularization is con-
trolled by the regularization parameter, a scalar value mul-
tiplied with the so-called regularization term. The choice of
the regularization parameter is crucial for the reconstruc-
tion process.

In this paper we propose a new method to estimate the
regularization parameter, based on a condition-number es-
timate of the approximated Hessian matrix, which has to be
inverted in the case of sequential quadratic programs (e. g.
Newton-like methods). The validity of this method will be
demonstrated for a capacitance tomography problem, which
is solved applying a Gauss-Newton scheme.

Keywords—Capacitance Tomography, Gauss-Newton, Op-
timization, Regularization

I. Introduction

For obtaining a reasonable solution for a regularized re-
construction problem, it is necessary to find a good choice
for the regularization parameter.

There exist several methods to determine this parameter
a priori or a posteriori. The only criterion in the class of
a priori estimates is the discrepancy principle. The idea
behind this criterion is that we cannot expect more accu-
racy in the approximate solution than the one present in
the data. This criterion is attributed to Morozov [1].

Two examples for a posteriori regularization parameter
estimates are the generalized cross validation method [2],
with the disadvantage that some involved operators are
difficult (and often with a considerable amount of compu-
tation time) to obtain, and the L-curve criterion ([3] and
[4]), which suffers from high computational cost, as well.

For reconstruction problems where the model states may
vary in a wide range, like for Capacitance Tomography,
where permittivity values to be reconstructed may be the
ones of water (εr=80), oil (εr=2-3) or air (εr=1), the value
for the reconstruction parameter is depending on the ma-
terials involved (a reconstruction parameter that works for
oil and air gives very wrong results for water and oil).

In our investigations we found that the condition number
of the approximate Hessian for a Gauss-Newton step, which
is a function of the Jacobian matrix and of the regulariza-
tion parameter multiplied with the regularization term, is
less sensitive to the materials involved than the regulariza-

Manuscript received November 15, 2002
B. Brandstätter, G. Holler and D. Watzenig are with the Insti-

tute for Electrical Measurement and Measurement Signal Processing,
Kopernikusgasse 24, A-8010 Graz, Austria, email: brand@ieee.org,
holler@emt.tugraz.at, watzenig@emt.tugraz.at

tion parameter itself, and, hence is a suitable criterion with
minor additional computational cost to determine a value
of the regularization parameter, which leads to a reasonable
regularized solution.

II. Description of the Method

For the forward problem solution (determine the poten-
tials at floating electrodes from a given permittivity dis-
tribution and a given set of active electrodes (with a pre-
scribed potential)) the governing equations to be solved are
Gauss’ and Faraday’s law for the static case leading to a
Poisson equation in the interior of the pipe:

∇ (ε (∇V )) = 0, (1)

where ε is the spatial dependent electric permittivity (ε =
ε0εr, where ε0 is the permittivity of air and εr is the dimen-
sionless relative permittivity) and V is the electric scalar
potential. Dirichlet boundary conditions apply at the posi-
tion of the electrodes, while homogeneous Neumann bound-
ary conditions apply elsewhere on the boundary. The for-
ward problem is solved by means of a finite element ap-
proach with linear triangular finite elements.

The inverse problem can be formulated as follows:

εr = arg min
εr

{
‖Vm − V0‖2

2 + α ‖Lεr‖2
2

}
, (2)

where V0 is a vector of measured potentials and α is a
regularization parameter in Volts.

The regularization matrix L is a discrete first order oper-
ator (approximated with finite differences), where L(i, j) =
−1 when finite element j is a neighbor of finite element i
and zero otherwise; and L(i, i) = −∑

j L(i, j) i �= j. This
choice of the regularization matrix incorporates a smooth-
ness assumption about the interior region into the mathe-
matical model.

A Gauss-Newton update step for εr for iteration t is given
by

εt
r = εt−1

r + γδεr (3)

with

δεr =
(
JT J + αLT L

)−1 (−JT (Vm(εr) − V0) − αLT Lεr

)
(4)

and γ being a dimensionless scalar value for adjusting step-
sizes.

In (4) J denotes the Jacobian of the transformation be-
tween permittivity and potentials. The entry in the ith row
and jth column equals

Ji,j =
∂Vm,i

∂εr,j
(5)
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Prior to the iterative process (3)-(4), the following min-
imization problem is solved for an optimal value α∗ :

α∗ = arg min
α

(∥∥cond
(
JT J + αLT L

) − c
∥∥2

2

)
, (6)

where cond(·) is the condition number of (·) (the ratio of
the largest singular value of (·) to its smallest) and c is
an empirically found condition number, which leads to a
good value for α and, hence, to a reasonable reconstruction
result.

III. Validation of the Method

For testing the above described method three types of
material distributions were chosen:
1. pipe filled with 3/4 oil with εr=2 and 1/4 air (εr=1)
(distribution 1 )
2. pipe filled with 1/2 oil with εr=2 and 1/2 air (εr=1)
(distribution 2 )
3. pipe filled with water (εr=80) with an oil inclusion of
εr=2 (distribution 3 )

In Fig. 1 - Fig. 3 the reconstruction results for distribu-
tion 1 - distribution 3 are reported. All reconstructions
were made with γ = 1 and c = 5E − 5.
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IV. Conclusions

In this paper a fast and easy to implement method for
choosing a good value for the regularization parameter was
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Fig. 3. a) true εr distribution (distribution 1 ). b) reconstructed εr

distribution (α = 6.7E − 9)

proposed. The novel method is based on fitting the condi-
tion number of the Gauss-Newton system matrix (which is
an approximate for the Hessian) to an empirically found
value, which is almost insensitive to materials involved
(different to the regularization parameter). For the recon-
struction of distribution 1 and of distribution 2 a value of
the regularization parameter of 1.2E − 3 is suitable, while
reconstruction of distribution 3 with this parameter fails
(here α = 6.7E − 9 for a good reconstruction). All distri-
butions could be reconstructed with c = 5E − 5.

A detailed analysis of the new method will be given in
the full paper.

References

[1] V. A. Morozov, Methods for solving incorrectly posed problems,
Springer, New York, 1984

[2] G. H. Golub, M. T. Heath, and G. Wahba, ’Generalized cross-
validation as a method for choosing a good Ridge parameter’,
Technometrics, 21(2), 215-223, 1979

[3] P. C. Hansen, ’Analysis of discrete ill-posed problems by means
of the L-curve’, SIAM Review, 34(4), 561-580, 1992

[4] P. C. Hansen and D. P. O’Leary,’The use of the L-curve in
the regularization of discrete ill-posed problems’, SIAM J. Sci.
Comput. , 14(6), 1487-1503, 1993

11Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Topology-Based Inequalities and Inverse Problems
for Near Force-Free Magnetic Fields

P. Robert Kotiuga
Department of Electrical and Computer Engineering

Boston University
8 Saint Mary Street, Boston, MA 02215

Email: prk@bu.edu

Abstract— We review a conjecture characterizing the knotting
of current paths arising as solutions to an inverse problem
involving near force-free magnetic fields. Results about the
nonexistence of solutions involving force-free fields supported in
a finite domain are then considered, as are explicit constructions
of force-free solutions in unbounded domains. This shows why
truncating solutions defined on unbounded domains has proven
ineffective in the literature, and why the solution to the inverse
problem involves a ”near force-free magnetic field”. Solutions
are then characterized by inequalities involving the current
distribution’s mean asymptotic linking and crossing numbers.

I. INTRODUCTION

Consider the inverse problem of creating an intense mag-
netic field in a current-free region of space, by currents exterior
to the region, with the additional constraint that the Lorentz
force in the current carrying region is minimized. If the
currents are confined to conductors, the force constraint can
be accommodated by twisting conductors in a specific manner
[9][10][11]. The resulting knotted conductors resemble nested
torus knots. In general, there is a conjecture characterizing the
nature of the knotting of the conductors in terms of Thurston
and Alexander norms on the cohomology class of the magnetic
field intensity vector

�
in the region of space exterior to the

conductors [5]. The purpose of this paper is to step back from
algebraic characterizations of the knotting of the current paths,
and to consider inequalities relating measures of self-force,
stored energy, and power dissipation, to topological measures
of knotting expressible in terms of the current distribution
and the resulting magnetic field. These topological measures
amount to the mean asymptotic crossing and linking numbers
of the magnetic field [1][2][3][8] [12][13][14].

II. ON THE POSSIBILITY OF FORCE-FREE FIELDS

Theorems asserting the nonexistence of equilibria in elec-
tromagnetic systems have a long history. An early well-
known result is Earnshaw’s theorem which states that that a
system of charged conductors, subject only to electrical forces,
cannot be in stable equilibrium [15]. Similar results hold for
magnetic systems. In astrophysics, the Maxwell stress tensor
and the virial theorem are used to show that stars cannot
be in a stable equilibrium under magnetic and gravitational
forces alone. Hence, it seems unwise to assert that the inverse

problem mentioned above has a solution involving a force-free
magnetic field.

On the other hand, there is a large literature on force-
free magnetic fields. The starting point is an integration by
parts formula which reveals that the curl operator is formally
self-adjoint. The finite energy eigenfunctions [4] of the curl
operator then satisfy: ������� �	��
��

(1)

In the absence of displacement currents, a force-free magnetic
field can then be seen to result from Ampere’s law:�������� ������� �����������
���������������

(2)

Unfortunately, these force-free fields cannot be superimposed
since the Lorentz force law is quadratic. Furthermore, since
these eigenfunctions are analytic, there is no way to truncate
the eigenfunctions to find force-free currents generated by
compactly supported currents [16]. Returning to our inverse
problem, we make the following definition of a near force-
free magnetic field.

Definition Let  be the set theoretic intersection
of the supports of the current density

�
and its

associated magnetic field
�

. A near force-free field
is a magnetic field

�
satisfying:

1)  is connected.
2) ! � ! "#! � ! "%$&! �'(� ! " throughout  .

The crucial point in the definition is that we have a strict
inequality throughout the connected set  .

III. NEAR FORCE-FREE FIELDS

Armed with the above refinement of the notion of a force-
free field, and inspired by the trigonometric identity ) �*�+-, "�.0/ �213* " . , we write:! � ! " ! � ! " � ! �'(� ! " / �4�657�8� " (3)

When the simplest constitutive laws for Ohmic conductors are
used, in the absence of displacement current, this becomes:9 ���:��5<;=�2���>5<����� ! ���� ! "?/ � " �@�A5 ���B�C� ��� " (4)

On the right hand side of this equation, we find the densities
of Joule heating and magnetic energy, while the first term on
the left is the magnitude of the Lorentz force density squared.
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Recognizing that the
�D5 ������� � term represents a twisting of

the magnetic field lines, we see that if
�

is a near force-free
field, then

1)
�A5 ���B�C� � is nonzero in  and

2)
�A5 ���B�C� � cannot change sign in  .

This observation is very useful if we integrate Equation (4)
over  , and look at the topological consequences of having a
near force-free field.

The first step in relating Equation (4) to global topological
results is to integrate the integrand (4) over  and use the
identityEBF ���G5��H� " � EBF ���G5��(I �G5��H� "7J  / � �K5L�M� " EBF J  (5)

where �K5L���KN
F �G5L� J  N
F
J  

is the current helicity normalized by the volume of  . Equa-
tion (5) relates the integral of the last term in (4) to the current
helicity. The next step is to bound the magnitude of the helicity
above and below by well understood topological invariants.
This exposes the trade-off between power dissipation weighted
by energy density, Lorentz force, and topology.

IV. THE INEQUALITIES

Recall the Biot-Savart Integral�'�POQ�R� )S3T EBUWV ��O0IXOZY4��[�R�POZYP�! O0IXO Y ! \ J  Y (6)

where ] Y is the support of
�R�POQY:�

. Two sided bounds on the
current helicity are immediate once one considers the three
integrals:^ � ____

EBU �'�POQ�M5��R��OZ� J  ____� )S`T ____
E U E U V �R��OZ�a53�b��O0IXOZY:�cd�R��OeY:���! O=IfO ! \ J  Y J  ____^3^ � EBU ! �'�POQ�M5��R��OZ� ! J  � )S`T EBU ____

E�UWV �R�POQ�a5g�b��O0IXOZY:��d�R�POZYP���! OhIXO ! \ J  Y ____ J  ^g^3^ � )S3T E U E U V ____
����OQ�i53���PO=IXOZY4�c[����OZY4���! O=IfO ! \ ____ J  Y J  

where the third integral cannot be expressed in terms of
�'�POQ�

.
Immediately, we have the inequalities:^3^g^kjl^3^djm^

(7)

and the following observations:
1) If

�
is nearly force-free, then

^ � ^g^
.

2) Integral

^
is the magnitude of the asymptotic linking

number of Arnold [1][2][13].
3) Integral

^g^3^
is the mean asymptotic crossing number of

Freedman [8][12].

4) The magnitude of the current helicity is bounded below
by the magnitude of the mean asymptotic linking num-
ber and above by the mean asymptotic crossing number.

The trade-offs coming as a consequence of these observa-
tions will be taken up in the extended paper. Surprisingly, they
point to the importance of considering Hall voltages and the
electric field. This is also important for having a consistent
formulation for numerical simulations.

V. CONCLUSION

Trade-offs between weighted power dissipation, forces on
conductors, and topological invariants are articulated by means
of inequalities. This exposes the three dimensional nature of
high field magnet design when mechanical constraints are
incorporated.
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Abstract – An efficient preconditioner for systems issued from the finite 
element discretization of time harmonic Maxwell's equations with 
absorbing boundary conditions is presented. It is based on the Helmholtz 
decomposition of the electromagnetic field. It is compared to "classical" 
preconditionners on both simple and realistic problems. 

INTRODUCTION

Electromagnetic scattering problems are classically 
modeled using time harmonic Maxwell's equations with 
Silver-Müller conditions. The numerical solution of these 
equations leads to complex and symmetric matrices [1]. To 
solve these systems, Krylov subspace methods may be used: 
BiCGCR [2], symmetric QMR [3] or COCG [4]. Classical 
preconditioning methods are implemented in order to 
accelerate the convergence of these iterative algorithms: 
SSOR, incomplete Cholesky factorization [5], ... An efficient 
preconditionner based on the Helmholtz decomposition has 
been previously proposed for simple eddy currents problems 
[6]. The objective of this paper is to show its efficiency for 
realistic scattering problems.  

PROBLEM FORMULATION

This work deals with time harmonic Maxwell's equations 
with Silver-Müller conditions. These equations and 
propagation condition entails the following weak formulation 
on the domain � (in electric field E here): 
Find E in � ��

�
curl,

d
H  with: 

� �����

����

�������	��

�

�

���

�

���

curl,

,

curlcurl 2

d

a

di

i

HE

EJ

EEnEnEkEE

��

���

(1)

where � denotes the wave pulsation, k the wave vector, n the 
boundary normal, � the permeability, � the permitivity, Jd the 
source current density, �a the absorbing boundary, �d the 
perfect electric conductor boundary (E�n � 0 on �d). The 
formulation space of the problem is defined as: 

� � � �� �dd
�������

�
on0,curl,curl, nHH .

Incomplete first order edge elements [7] are used for 
discretization, leading to the linear system bAx � . A  is not 
hermitian definite positive but is symmetric. These 
characteristics are essential for the choice of solving methods. 

AN EFFICIENT PRECONDITIONER

Following the Helmholtz decomposition, electric field E 
or magnetic field H can be decomposed into two components 
[7]:

�grad�� sEE (2)
where: 
- grad � is a "static" component with a scalar potential �. It 

belongs to the kernel of the curl operator. 
- Es is a "propagation" component called solenoidal 

component. 
In [8], it is underlined that the behaviour of the  

"curl curl" operator is not the same on these two parts. The 
existence of the scalar potential � indicates that a secondary 
problem with “��” can be considered. SSOR preconditioner 
has been shown to be efficient to solve this secondary 
problem. Moreover, in the discrete setting, the connection 
between first order nodal elements (space Nh) and first 
incomplete order edge elements (space Qh) enables to define 
a transfer operator P : Nh � Qh. The matrix for the scalar 
potential problem is then assembled by Galerkin product:  
A
�
� PTAP where A is the edge elements matrix. 
The algorithm of the preconditioning method is classical 

for the A matrix and takes into account the second matrix A
�

by specifically dealing with the scalar potential component 
(Fig. 1). 

1. 0,0 ��
�

xxn

2. k descents with Gauss-Seidel algorithm on n
T rPxA �

��

3. 
�

Pxxx nn ��

4. 1 descent and ascent with Gauss-Seidel algorithm on nn rAx �

5. 0�
�

x

6. k ascents with Gauss-Seidel algorithm on � �nn
T AxrPxA ��

��

7. 
�

Pxxx nn ��

Fig. 1. One iteration of the preconditioning algorithm using the Helmholtz 
decomposition. Generally, k=1 or 2.

NUMERICAL RESULTS AND CONCLUSION

To compare this new preconditionner to more "classical" 
ones, two kinds of problems are considered. 
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First, a plane wave scattered by a 3D cylinder is studied. 
From Fig. 2, it is shown that the number of iterations evolves 
with the number of degrees of freedom (dof.) for the four 
implemented solving methods: 3 solvers (COCG, BiCGCR, 
QMR) with SSOR preconditioning, and a COCG solver with 
the Helmholtz decomposition preconditioner. Table I gives 
the corresponding CPU times. The new preconditioner needs 
roughly three time less iterations and twice less CPU time. In 
addition, COCG is here the fastest solver with SSOR 
preconditioning. Consequently; in the following, only the 
results with a COCG solver are given. 

Fig. 2. Increase of the number of iterations with the number of dof. 

TABLE I. COMPARISON OF CPU TIME (S) FOR THE 3D CYLINDER.

Number of dof 84 385 153 293 256 121 392 524 
QMR – SSOR 2215 5341 9807 19735 
COCG – SSOR 1862 4433 8408 17175 

BiCGCR – SSOR 2395 5214 10364 22264 
COCG – Helmholtz 1111 2317 4455 7992 

Different kinds of materials for the cylinder are tested. 
The difficulty in the indefinite case (�u � 0, tAu � 0) with the 
lossless cylinder is highlighted (Table II). The efficiency of 
the new preconditioner is kept in every case. 

TABLE II. CPU TIME (S) AND ITERATIONS FOR DIFFERENT CYLINDERS:
PERFECT ELECTRIC CONDUCTOR (PEC), LOSSLESS AND LOSSY DIELECTRIC.

Problems PEC Lossless diel. Lossy diel 
Number of d.o.f. 34 553 35 713 35 713 
COCG – SSOR 

Number of iterations 
CPU time (s) 

713
500

939
731

790
695

COCG – Helmholtz 
Number of iterations 

CPU time (s) 
217
289

246
364

216
295

Efficiency of the Helmholtz decomposition preconditioner 
is observed on two realistic problems: hyperthermia (Fig. 3) 
and airplane illuminated by a plane wave (Fig. 4). The new 
preconditioner is interesting in both cases (Table III), and 
more particularly for the hyperthermia problem. 

Fig. 3. Hyperthermia RF (27 MHz) for treating deep tumours. 

Fig. 4. Illumination of a plane by a 100 MHz plane wave. 

TABLE III. CPU TIME (S) AND ITERATIONS FOR TWO REALISTIC PROBLEMS.

Type of problem Hyperthermia Plane 
Number of dof 202 701 574 151 
COCG – SSOR 

Number of iterations 
CPU time (s) 

Not convergent after 
8000 iterations 

2890
40096

COCG – Helmholtz 
Number of iterations 

CPU time (s) 
474

3362
1210

26320

CONCLUSION

A preconditioner based on the Helmholtz decomposition 
has been developed for scattering problems. This method is 
efficient because well adapted to the property of the 
“ curlcurl ” operator. Furthermore it is simple to implement.  
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Abstract−−−−The Multi-Level Fast Multipole Method (MLFMM) 
speeds up the matrix-vector multiply in the iterative solution of the 
matrix equation arising in the Boundary Element Method. It makes use 
of a spatial hierarchy of the elements: elements are arranged into 
groups, and those groups are arranged into higher-level groups, and so 
on. Ideally, the groups should be widely separated clusters. If the 
clustering is not adequate, the MLFMM may perform no better than 
direct matrix-vector multiplication. An efficient clustering algorithm is 
proposed. It is applied to scattering of electromagnetic waves from 
buildings at cell-phone frequencies.

INTRODUCTION

The Multi-Level Fast Multipole Method (MLFMM) is a 
technique for reducing the time taken to solve field problems 
by the Boundary Element Method (BEM), and has been 
widely applied in electromagnetics. The BEM reduces the 
field problem to:  

                    [ ]{ } { }bxA =            (1) 

where { }x  is the unknown vector of size N, { }b  is a known N-

vector, and [ ]A  is a known square matrix [1,2]. Equation (1) 
may be solved iteratively in ( )NO  iterations. Normally, the 

computational cost per iteration is ( )2NO . However, The 
MLFMM makes use of a geometrical hierarchical clustering 
of the boundary elements to reformulate the [ ]{ }xA  product 

such that this cost reduces to ( )( )NNO ln  instead.  
Assume for simplicity that each element gives rise to one 

unknown in { }x  (as it commonly does). Then (1) corresponds 
to N elements. Suppose that these are combined into S groups 
each containing Ts elements. Let Cs be the center of the sth

group, defined, for example, as the center of the smallest 
rectangular box in which the Ts elements can be inscribed. A 
group diameter may also be defined, e.g., as the length of a 
diagonal of this rectangle. Fig. 1. illustrates this grouping 
scheme for a simple N=8 case in 2D. A multi-level 
hierarchical tree is obtained by combining groups themselves, 
shown in Fig. 2. for a two-level structure.  

In order for the hierarchical structure to be effective in 
reducing the computational cost, the groups should be chosen 
so that any two of them have centers that are sufficiently far 
apart compared to their diameters, i.e., the groups should, if 
possible, correspond to well-separated clusters of subgroups 
or elements. If the clustering is poor, the MLFMM will be 

only partially effective. Since in general there may be a large 
number of elements with no particular structure or order, a 
clustering algorithm (CA) is needed to construct a suitable 
tree before the MLFMM itself is applied. The algorithm must 
be carefully designed so that its computational cost is modest 
in comparison with that of MLFMM. Such an algorithm is 
the subject of this paper. 

CLUSTERING ALGORITHM

Let the elements be ei, i=1,...,N. Initially, N groups are 
defined, each containing one element. The concept is to 
merge groups that are closest to each other into higher groups 
in order to maximize the relative distance between the latter. 
Letting dist(g,h) be a measure of the distance between groups 
g and h, the algorithm (similar to [3]) is as follows: 

0. Initialize.
Set I = {1,2,…,N}.
For i = 1,…,N:

Group gi = {ei}.
Tij = dist(gi, gj), for j>i.

ij
Ijij

i Tp
∈>

=
,

min . 

ki = index j at which minimum occurs. 
1. Merge the two closest groups.

Fig. 2. Two-level FMM tree 

N elements

S Groups

S Groups

Fig. 1. Illustration of FMM grouping, with two of the 
four groups indicated. Element numbers are in bold. 

1 2
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4
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Find index m such that Iipp im ∈∀≤ .

mkmm ggg ∪=   and  ∅=
mkg .

Remove km from set I.
2. Update the distances.

For Ii ∈ :
If mi < :   Tim = dist(gi, gm).
If mi > :   Tmi = dist(gm, gi).

3. Update the minimum distances.
For Ii ∈ :

If ki=m or ki=km (rare cases):  

ij
Ijij

i Tp
∈>

=
,

min . 

ki = index j at which minimum occurs. 
 Otherwise: 

If mi <  and Tim < pi: pi= Tim and ki=m.
4. Loop. If I has only one entry, stop. Otherwise, go to 1. 

The initialization is clearly O(N2). Steps 1 through 4 are 
performed N-1 times, as the N groups are condensed into one. 
Step 1-3 are O(N) and step 4 is O(1). Therefore, the overall 

computational cost is O(N2), lower than the ( )( )NNO ln2  cost 
of MLFMM itself. 

RESULTS

We have implemented a 2-D MLFMM method in Visual 
C++ in order to study electromagnetic scattering from perfect 
conductors at cell-phone frequencies. Fig. 3. shows that its 
performance is indeed ( )( )NNO ln  per step. Note that the 
crossover point at which the MLFMM starts performing 
better than a direct matrix-vector multiply is for about a 
thousand elements.  

To show the importance of an efficient CA, we consider 
MLFMM implementations with and without the CA using 
16384 elements (well above the crossover point). With the 
total number of elements and the element diameter remaining 
constant, the first test case has four 40m-side square buildings 
(16 walls). The elements are input on a wall per wall basis, 

but purposefully in such a way that consecutive walls are not 
geometrical neighbors. In subsequent test cases, the number 
of buildings (and walls therefore) is multiplied by 4 and the 
wall size is necessarily divided by 4 as shown in Fig. 4.  The 
last test case has 4096 walls of 4 elements each. 

Since a wall is input as a group, having more walls 
increases disorder and Fig. 5. shows how the MLFMM 
implementation without clustering can become very poor and 
converge towards the direct method.   

CONCLUSION

In the absence of a pre-processing stage that constructs a 
suitable tree structure, the MLFMM may be no more efficient 
than the direct method. The clustering algorithm presented is 
an effective yet relatively inexpensive pre-processor. 
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Fig. 3.  Simulation times per iteration 
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Abstract—A geometric multigrid algorithm is proposed for the solution
of electromagnetic field problem, which uses the mesh independent bound-
ary resolution techniques of the Conformal Finite Integration Technique
(CFIT) for the construction of the coarse grid operators. Both an exact and
an approximative, merely algebraic construction principle are proposed. A
validation of the presented algorithmic approach and first experimental re-
sults on the asymptotical complexity of the algorithm are achieved for an
electro-static test problem.

I. I NTRODUCTION

The time required for the solution of the algebraic systems of
equations arising from the discretization process still dominates
the CPU times of most static or low frequency field simulations
of computational electromagnetics. For this reason multigrid
methods with their superior convergence behavior for very large
problems are considered an interesting alternative to precondi-
tioned conjugate gradient such as SSOR-CG or ICCG. The ge-
ometric multigrid concept includes the process of smoothing er-
ror components, i.e., solving approximately a defect equation
using a stationary iterative solution scheme on a sequence of
� � � ever coarser, possibly nested, grid levels��� with grid
resolutions��� � � �� � � � � �� of the problem [1]. Typically, the
number of degrees of freedom on the coarsest grid level� �� is
small enough to use a direct solution method at negligible ad-
ditional computational costs. In this paper we propose a new
combination of a geometric multigrid formulation and the mesh
independent discretization scheme for Maxwell’s equations, the
Conformal Finite Integration Technique (CFIT).

II. CONFORMAL FINITE INTEGRATION TECHNIQUE

The Finite Integration Technique (FIT) transforms the
Maxwell equations in their integral form into a set of matrix
equations on a dual grid pair��� ��� [2]. In the resulting so-
called Maxwell-Grid-Equations (MGE)

C�� � �
�

�	

��

� ���

� �
�

�	

��

� �
��

�

S
��

� � � ����� � q
� (1)

the vectors�� and
�

� contain electric and magnetic grid voltages
as components and

��

� �
��

� and
��

� are vectors of electric and mag-
netic facet fluxes. The discrete rotation matricesC� ��� the di-
vergence matricesS� �� and the gradient matricesS� � ��� contain
information about grid incidence relations of� and ��� The ap-
proximation of this method is contained in the construction of
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the discrete constitutive material equations

��

� �	�
�� �

��
�
��

� �	�
���

�

� �	�

��

� �
�� (2)

featuring the so-called material matrices:	� for the permit-
tivities,	� for the conductivities and	� for the reluctivities,
whereas��
 and
� arise from permanent electric and magnetic
polarisations. For orthogonal grids, the construction of the equa-
tion

��

� � 	�
�� in (2) involves the one-to-one coupling of an

electrical grid voltage��� along a grid edge�� � � with the
corresponding flux

��

�� through the dual facet��� � ��� which is
intersected perpendicularly by��. In the classical FIT this in-
cludes an averaging process for the permittivity�� � over the cell
subvolumes of� cut by the dual facet���� such that

��

�� � �	�����
��� �� ���

� ����

����
��� �

�
���
���	 � � � ��
	�

� � ��
��� (3)

holds, where� and� denote the unit outer normal vector on���

and the unit tangent vector along the edge� �� respectively. The
resulting matrix	� � D ��D��D��	 of (3) with the matrices of
dual facet areas	 ��� of edge lengthsD	 and of averaged dual
facet permittivitiesD�� is diagonal.

Recent publications on geometric discretization methods for
Maxwell’s equations show, that the the lowest order Whitney-
Finite Element formulations can be derived in the form of (1),
the main difference lying in the construction principle of the
material matrices [3]. The introduction of the Conformal Finite
Integration Technique (CFIT), first proposed in [4], [5] for high
frequency formulations and introduced to quasistatic formula-
tions in [6] is based on the same construction principle (3). The
exact evaluation of the integral for the material parameters on
the dual grid facets��� allows to consider curved material in-
terfaces and shape boundaries inside the cells of� during the
discretization process while still using an orthogonal grid. With
the CFIT method a grid mesh can be set-up independently of
the shape contours of the problem, i.e., the mesh only describes
the location of the field components, but no longer the material
distribution of the problem.

III. G EOMETRIC MULTIGRID METHOD USING CFIT

The construction of a coarser grid level����� involves the
restriction of the system matrix��� and the restriction of the
��� grid level defect vector�� � For non-structured, nested grids
the system matrix is commonly projected using the restriction
and prolongation (interpolation) matrices�����

��
and���

����
� re-

spectively [1], with����� �� �
����
��

���
��
����

� which involves

1
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sparse matrix-matrix multiplications. Different restriction and
interpolation operators have to be devised for the degrees of
freedom on the primal and dual nodes�� �� , edges�� ��, facets
�� �� and cell volumes�� �� in a straightforward way, result-
ing in the matrix operators for intergrid restrictions�����

����
and

interpolation���

������
� respectively. The index� intrinsically

denotes the objects on which these operators act. For Carte-
sian tensor-product grids the coarse grid system matrices�����

can be constructed by newly discretizing the problem for each
coarser grid resolution. In standard Finite Difference schemes
this approach is typically coupled to a decreasing quality of the
mesh representation of the original problem. For this task we
propose to use CFIT with its mesh resolution independent dis-
cretization capabilities. Here for each grid level���

the con-
struction of the system matrix

�����
�� ���CFIT

����
� (4)

involves only the corresponding grid incidence matrices and the
material matrices�CFIT

��
� respectively. To attain the CFIT mate-

rial matrices, the repeated use of a CAD model kernel for the
exact evaluation of the averaged material parameters in (3) is re-
quired. If this repeated use is too time consuming, we can use
this approach just for the fine grid CFIT material matrix�CFIT

��
�

Using this information, a material matrix, e.g.��� can be con-
structed algebraically for coarser grid resolutions� ���� 	 � ��
with

��
CFIT
����

�� �

��
���

�
����

�� � ��
�D �����

D������

��
���

�
����

�� ��
D�����

��� (5)

which yields a new variant of the FIT, theAlgebraic Conformal
FIT (ACFIT), which can be also used starting from fine grid
resolutions with the classical FIT.

IV. N UMERICAL RESULTS

First numerical results are presented for a three-dimensional
test problem consisting of a dielectric ball in a plate condensator
field depicted in Fig. 1. For this problem the linear discrete

0 1.0 V/m01.0 V/m

Fig. 1. Dielectric ball (�� � �) in an electrostatic plate condensator field
discretized with the Conformal Finite Integration Technique.

Poisson system���CFIT
�
��	� � � is solved using the proposed

algebraic CFIT-MG solution scheme, which requires to apply
a stationary iteration method as a smoother to the sequence of
defect equations

������
�

(CFIT

������

��	����

����

� �����
� �
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���
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Fig. 2. Asymptotical complexity studies for the algebraic CFIT-MG schemes
with Jacobi-/Gauss-Seidel-smoother and an SSOR-preconditioned conjugate
gradient scheme (SSOR-CG) for the test problem of Fig. 1

at the each grid level���
. In Fig. 2 results of numeri-

cal tests performed with a MATLAB implementation are pre-
sented. Here, the ACFIT multigrid scheme, using either
Jacobi- or Gauss-Seidel-smoothers [1], is compared to a SSOR-
preconditioned conjugate gradient method. The iterative pro-
cesses are terminated if a final relative residual norm accuracy
� � ���� is reached. The arithmetical work of the SSOR-
CG scheme grows approximately similar as��� ���� for an in-
creasing number of grid points�� � ��� Both the CFIT-MG
schemes, however, also do not reach the theoretically expected
optimal asymptotical complexity��� ���� in the 	
�� 	
�-plot
in Fig. 2. However, the routine for matrix-vector multiplication
in MATLAB features the same slope of 1.1 as the CFIT-MG
schemes using it, which explains this non-optimal behavior.

V. CONCLUSION

For the solution of linear systems arising from (quasi-)static
electromagnetic field problems a geometric multigrid scheme
was proposed, which uses the grid independent modeling capa-
bilities of the Conformal Finite Integration Technique. The new
approach maintains the separation of the metric-free grid inci-
dence operators and the material matrices also in the framework
of multigrid formulations. Numerical tests of a three dimen-
sional electrostatic test problem illustrate the computational effi-
ciency and improved asymptotical complexity of the new CFIT-
MG scheme in comparison to a standard SSOR-CG scheme.
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Abstract 
A new preconditioned solution with two controlling parameters for 

linear equations with large sparse symmetric and non-positively 
definite matrix is presented in this paper. Through theoretical analysis, 
the proper choice of the controlling parameter can make the 
preconditioned matrix  positively definite and  approach the unit 
matrix, and reduce the number of  iteration obviously. Numerical 
examples show that the method can reduce the computation time over 
50% than the conventional ICCG method. 

INTRODUCTION

The coefficient matrix of  the linear equations which arise 
from the finite element analysis of eddy-current field problem 
of electrical devices is generally symmetric and 
non-positively definite, and the number of variables of the 
equations has exceeded 100,000. At the present time, the 
conventional incomplete Choleski-Conjugate Gradient 
(ICCG0) method has been widely used for the solution of  the 
equations. The ICCG0 method   is based on the coefficient 
matrix  being positively definite, but in practice it  has also 
been used for the equations with non-positively definite 
coefficient matrix. Even if for positively definite coefficient 
matrix, the convergence rate of the ICCG0 method is 
sometime very slow. For example, for the solution of the 
TEAM Workshop problem 10, it once appears that the 
iteration number of  the ICCG0 method solving the equations 
with 4000 or so variables was over 7000. For the equations 
with symmetric and non-positively definite coefficient matrix, 
if  the preconditioned matrix is just positively definite, the 
ICCG0 method  could converge properly, or else it may not 
converge. For the equations with positively definite 
coefficient matrix, M.A.Ajiz and A.Jennings [1] proposed a 
method that forms preconditioned matrix according to the 
absolute value of the incomplete decomposition elements, but 
did not give the mathematical theory inference. The authors’ 
previous paper  [2] gave a method with a controlling 
parameter that can  reduce the number of non-zero elements of 
the incomplete decomposition without increasing the number 
of the CG iterations, however, the mathematical inference it 
gave only for  the equations with positively definite 
coefficient matrix.  

This  paper presents a new preconditioned solution with 
two controlling parameters for equations with symmetric and 
non-positively definite matrix. The parameters �  and  �  are 
used for controlling the elements of the incomplete 
decomposition in correspondence with non-zero or zero 

elements of original coefficient matrix to be  retained or to be 
ignored respectively.  Through theoretical analysis, the proper 
choice of the controlling parameter can make the 
preconditioned matrix  positively definite and  close to the 
unit matrix, and  reduce the number of  iteration obviously.  

DESCRIPTION OF THE NEW METHOD

Consider the system of  linear equations 

bxA �                                         (1) 

which arises from the finite element analysis of eddy-current 
field problem of electrical devices, where A is generally a 
large sparse real symmetric matrix. The main steps of the 
method presented here are as follows. 

Step1

Implement the incomplete decomposition of matrix A with 
the controlling parameters )(, ���� � , i.e. ELDLA ��

T ,
where TLDL are  the incomplete decomposed factors, E is
the error matrix. Denote IDLG ��� , where I is unit 
matrix. The sparsity pattern of G is not prescribed 
beforehand, whereas it is based on a tolerance range. Create 
G as follows: Calculate the element of G, ijg , given by 
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1 , � �ij ,,2,1 ��           (2) 

1) If the element of A, ija , is equal to zero and ��ijg ,
then ijg , the element of ,G is filled in, or else ignored. 

2) If 0�ija  and   ��ijg , ijg  is ignored, or else filled in. 

Step2

Transform (1) into 
dyC �                                                (3) 

where � � � �
T��

�

2/112/1 LDALDC is the preconditioned matrix, 

the elements of 2/1D are positive real number or pure 
imaginary [1]. Then solve (3) using CG iteration. 
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Though the element of 2/1D can be pure imaginary, the CG 
method for solving (3) [3] only use the elements of D , and 
the complex operation not occurs.  

It is obviously that if � is very large and 0�� , the 
method  is equivalent to ICCG0 method, and if 0�� and 

0�� , it is the complete Choleski decomposition method. 
Reference [1] suggested an idea of using the size of the 

elements of A (A being symmetric positive definite matrix)  to 
create the sparsity pattern of C . We adopt the idea for the 
symmetric but non-positive definite matrix. With the 
controlling parameter chosen properly, the method proposed 
can reduce the total computation time of the incomplete 
decomposition and the CG iteration considerably. According 
to the basic theory of numerical algebra, the following 
theorem is deduced in this paper. 

Theorem

Let the matrix A in (1) is symmetric matrix, and the 
absolute values of the elements of the error matrix E are all 
less than � . Notate ))()(( 2/112/1 TC ��

� LDELD� . Then 
when max

1
2

1
max ()2( LAL ��

���� is the biggest value of 

the sum of the non-zero element number for each row of the 
matrix TLDL ), C  is positive definite matrix, and the 
asymptotic rate of convergence for solving (3) with CG 
method is  
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where �y is the exact solution for (3), )(my is the m-th 
approximate solution. The deduction for this theorem will be 
given in the extended paper. 

NUMERICAL EXAMPLE

As a numerical model, the 3D eddy-current field analysis of 
a  single-phase transformer of 240MVA/500kV is carried out. 
The governing equation using AA, ��  method is given by 
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with proper boundary condition. For analysis of the transient 
eddy current field of the model at one time-step, the orders of  
real linear equations are 12458, 43518 and 72555, 
respectively. Fig.1 shows the magnetic field distribution on 
the symmetric surfaces of the transformer at the time t = 
0.0402s. Table1 shows the comparison of the new method 
with the ICCG0 method. The CPU times in Table I include the 
incomplete decomposition time and the CG iteration time. For 
solving the three sets of equations above, the new method 
with the optimum values, i.e. ,00005.0��  ,005.0�� can 
reduce the computation time over 50% than the conventional 
ICCG0 method. Owing to that the diagonal elements of 

coefficient matrix are normalized firstly, the recommended 
values of the controlling parameters have fairly general 
meaning for 3D electromagnetic field analysis. The 
recommended values of 001.000001.0, ����� are ,

01.0001.0 ���   respectively. 

CONCLUSIONS

A new method  for solving linear equations with large 
sparse symmetric and non-positive definite coefficient matrix 
in finite element analysis of electromagnetic field problems is 
presented in the paper. The proper choice of the controlling 
parameters can reduce the total computation time of the 
incomplete decomposition and the iteration. over 50% than 
the conventional ICCG0 method. The recommended values of 
the controlling parameters have fairly general meaning for 3D 
electromagnetic field analysis. 

TABLE  I. COMPARISON OF THE  TWO METHOD

(NUMBER OF EQUATIONS =  43518, � = 0.00005) 

Method �

Non-zero 
element 

Number of 
Iteration  

CPU 
Time 

(s)
ICCG0    1671517 1834 2139 

New 0.05   855346 2212 1638 
New 0.01   1012789 822 880 
New 0.005   1142325 746 892 
New 0.001   1904195 394 909 
New 0.0005   2357405 206 903 
New 0.00025   3087205 109 1056 

Fig.1 The magnetic field distribution on the symmetric surfaces of  a single 
phase transformer of 240MVA/500kV 
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Abstract – The aim of this study is to analyze the effectiveness of 
linear systems solvers on a well chosen list of 3-D transient 
electromagnetic problems. This list contains ill-conditioned matrices 
which are used to compare the solvers robustness. It also contains well-
conditioned matrices which are used to compare the time and the 
memory size taken by each solver. 

The results are disputed and we find that GMRES and Bi-CGStab 
are more robust than the standard IGBiCG solver. We can also improve 
computation time by using GMRES or take less memory size by using 
Bi-CGStab. 

INTRODUCTION

The aim of this study is to compare linear systems solvers 
on different matrices extracted from 3-D transient 
electromagnetic problems. Those problems are modeled by 
FLUX3D software which uses the finite element method 
(FEM). Our criteria to compare the different methods are 
firstly robustness, and secondly CPU time and memory size 
taken by the solver. 

In the FEM, it is necessary to solve a matrix system. The 
characteristics of this system depend on material properties 
which can be linear or non-linear. In the first case, we only 
solve one linear system, but in the second case, we use an 
iterative method (for instance the Newton-Raphson method) 
which solves a linear system at each iteration. The CPU time 
and the memory size taken by the solving step, which is 
already important in the first case, become very important in 
the second case. Also, we must have a solver which is robust, 
quick and takes small memory size. 

First, we will briefly describe the linear systems solvers we 
used. Second, we will test the robustness of each solver on 
two electromagnetic problems generating ill-conditioned 
matrices, that is to say closed to singularity. Finally, we will 
compare the CPU time and the memory size taken by each 
solver on various simple problems. Those problems generate 
well conditioned matrices which enable the solvers to 
converge. 

DESCRIPTION OF THE SOLVERS TESTED  

 The FEM generates matrices containing a small number of 
non-zero values, which are called “sparse matrices”. In our 

tests, we use three main iterative methods for this type of 
matrix. 

The first is a coupled solver because it uses “Incomplete 
Cholesky Conjugate Gradient” (ICCG) [1,2], if the matrix is 
symmetric and “Incomplete Gauss Bi-Conjugate Gradient” 
(IGBCG) [3], if the matrix is not symmetric. ICCG is formed 
by the standard Conjugate Gradient with the LDLT Cholesky 
preconditioning and IGBiCG is formed by the Bi-Conjugate 
Gradient with the LDU Gauss preconditioning. 

The second solver tested is “Bi-conjugate Gradient 
Stabilized” (Bi-CGStab), due to Van Der Vorst [4], which 
uses the ILUT preconditioning. 

The last solver is the restarted version of “Generalized 
Minimum RESidual” (GMRES),  due to Y. Saad and M. H. 
Schultz [5]. It uses the ILUT preconditioning. 

OBTAINED RESULTS ON THE  ROBUSTNESS TESTS

This part presents two transient electromagnetic problems 
generating an ill-conditioned matrix. In the first example, the 
ill-conditioning is caused by the edge element interpolation. 
In the second example, it is caused by the conductivity 
properties of the superconductor material. Those two 
problems are examples where the iterative solvers have  
difficulties to converge. 

Fig. 1–Description of the first test using the edge elements interpolation

The first problem uses the edge electric vector potential and 
the tree gauge to assure uniqueness of the solution [6]. The 
geometry is described on the figure 1. It uses a linear material 
and a coil supplied with a linear increasing current. There are 
two symmetry plans : xOz and yOz. 

Material
�r = 1 

� = 107 S/m

Coil 
100 Turns 
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The second problem is showed on the figure 2. It uses the 
nodal electric vector potential with a superconducting 
material, which uses the power law : 

0

1
-1

1

1
+

=

E
Jc

E
E

J
N

N
c

The problem contains also a silver sheet. On each side of 
this, there are two other superconductor plates. There are 
three symmetry plans : xOz, yOz and xOy. For those reasons, 
only one quarter of the geometry is represented.  

Fig. 2–Description of the second test using superconductor material

For both problems, the coupled solver uses IGBiCG 
because matrices are not symmetric. 

For the case with the edge elements, the matrix of the 
system to solve has 24 751 lines and 1 036 973 non-zero 
values. The resolution of the original matrix with IGBiCG 
does not converge. We need to introduce a rescaling factor, 
that reduces the differences between the values in the matrix 
in order for IGBiCG to converge. On the other hand, the Bi-
CGStab and GMRES solvers converge without rescaling 
factor. The obtained results are practically identical to those 
obtained by using IGBiCG with the rescaling factor. 

For the second case, using superconducting material, the 
matrix to solve has 37 303 lines and 2 579 157 non-zero 
values. As for the first case, IGBiCG solver does not converge 
while the two other solvers converge and give the same 
results. 

The results obtained on the two tests show that Bi-CGStab 
and GMRES solvers seem to be more robust than IGBiCG. 

OBTAINED RESULTS ON THE TESTS OF SPEED AND MEMORY SIZE

In this part, we compare the CPU time and the memory size 
taken by each solver on the first system resolution of the first 
time step. We use six very simple 3-D transient 
electromagnetic problems. For example, the first problem 
represents a cylinder surrounded by a coil supplied with a 

constant current. The cylinder has linear conductivity and 
permeability properties. 

Those problems generate matrices with a good conditioning 
and all the solvers converge. The results obtained on the six 
tests are presented on the table I. 

Table I– Comparative results of ICCG (IGBiCG), GMRES and Bi-CGStab 
on several electromagnetic problems. The column Sym indicates if the matrix 
is symmetric or not. 

We finally concluded that ICCG takes less time and less 
memory size for symmetric matrices. For general matrices 
however, Bi-CGStab uses less memory size whereas GMRES 
uses less CPU time. 

CONCLUSIONS AND PERSPECTIVES

In this paper, we showed results obtained with the solvers 
ICCG, IGBiCG, GMRES and Bi-CGStab and we compared 
them. The GMRES and Bi-CGStab solvers are more robust on 
our 3-D electromagnetic problems and they are also able to 
improve computation time or to use less memory size on non 
symmetric matrices. 

The two solvers have been tested successfully on transient 
electromagnetic problems. We can now test them on harmonic 
problems. It is then necessary to find complex versions of the 
solvers and to test them on a well-chosen list of harmonic 
problems. 
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Superconductor
Ec =0.001 V/m 
Jc = 2e10 A/m 
�0 =1013S/m
�r =1
N = 21

Silver 
� =108 S/m

Time (sec)   Memory place 
(nb reels/1000)

Test Sym ICCG GMRES BCGS ICCG GMRES BCGS
1 N 15 13 19 2 296 3 041 1 633
2 N 6,5 6 7 2 420 3 028 2 275
3 N 7 6 7 1 919 2 403 1 753
4 Y 24 28 26 4 909 9 459 6 515
5 N 52 11 12 2 955 8 042 3 097
6 Y 24 30 36 4 519 9 828 4 379

23Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



�Abstract-- The Finite Element Method (FEM) is the most 
powerful and widely used computational technique to calculate 
the electromagnetic field quantities in different arrangements. 
The Hopfield type neural network (HNN) is able to minimize the 
energy stored in the network; and the system of equations 
obtained from the weak form of the FEM can be solved by 
minimizing the energy function of HNN. The HNN can be 
implemented by hardware as an analogue computational tool. 
The procedure with some applications and the software 
simulation of a possible hardware realization are presented in 
this paper. 

Index Terms-- Finite Element Method, Hopfield type neural 
network, electrostatics, magnetostatics. 

I. INTRODUCTION

HE FEM is a widely used technique for the solution of 
electromagnetic field problems. The inverse of a sparse 

quadratic matrix must be calculated to obtain the solution, the 
unknown potential function. The HNN is a recurrent network 
with feedback from its output to the input of the network. 
This network can be useful in many ways; they can provide 
associations or classifications, optimization problem 
solutions, restoration of patterns and so on. With continuous 
variables it is useful for the analysis of mathematical 
programming problems. The structure and main properties of 
the network, one-, and two-dimensional problems are 
presented in this paper. Computer simulation of hardware 
implementation is discussed. 

II. THE HOPFIELD TYPE NEURAL NETWORK

The gradient-type HNN is a recurrent, dynamic network, 
shown in Fig.1 [1-3]. The network consists of N neurons with 
continuous activation functions � �iii vFx � , where � �txx ii �

is the output of the network and 

i

N

j
jiji bxwv �� �

�1
, Ni ,...,1� . (1) 

After specifying the weight and bias parameters ijw  and ib
(storage phase) the network is ready for operation. The 
network operates continuously in time during a dynamically 
stable process (retrieval phase); the output vector of the 
network is computed recurrently starting from an initial value 
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� �0ix , Ni ,...,1� . This iteration process continuing until 
equilibrium stable state is reached. As a dynamical system, 
the Liapunow’s theory can be very useful after defining the 
energy function of the network as 
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which can be described by a set of ordinary equations as 
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where i�  is a time constant. Equations (3) are called HNN 
evolutionary equations. The stable equilibrium state of the 
network is defined by the following criteria: 

� � 00min ���

dt
dE xx

x
. (4) 

The energy function decreases continuously when jiij ww �

and 0�iiw . In this case the energy function has to reach its 
minimum finally under the retrieval phase. These conditions 
can be fulfilled, when applying the HNN for the solution of 
linear FEM problems. 

Fig.1. Architecture of Hopfield neural network 
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Fig.2. Electric circuit model of the Hopfield neuron 

HNN can be applied to solve Quadratic Programming 
Problems with bilateral constraints 

� �xPKxx
x

TT
�2

1min , (5) 

where PKx �  is the system of linear equations obtained 
from FEM, K  is an NN �  quadratic and symmetric matrix, 
P  and x  are 1�N  vectors. For bilateral constraints the 
simple identity activation function can be used, 

� � iiii vvFx �� , as the values of the unknown potential can 
be any real number. The system of linear equations PKx �

can be rewritten in the form 0P-Kx �� , and the 
evolutionary equation (3) can be rewritten in vectorial form 
as 

� � bvEWv
���

dt
d , (6) 

where Nii ,...,1,1 ���  and E  is the identity matrix. From 
equation (6) EKW ���  and Pb � . The properties of 
stable equilibrium are fulfilled. 

A neuron of the HNN can be represented by a circuit 
using electrical components (Fig.2). The neurons mapping its 
input voltage iv  into the output voltage ix  through the 
activation function, which is a voltage controlled voltage 
source, weights and biases can be realized by resistors and 
current sources. The equation 
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can be obtained for the input node having potential iv . After 
substituting ii vx �  equation (7) leads to the ordinary 
differential equation 
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Parameters ijR , iR  and iI  can be expressed by comparing 
equations (3) and (8), 
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III. APPLICATION TO ELECTROSTATIC PROBLEMS

As the simplest illustration, a one-dimensional problem 
has been investigated for the Laplace-Poisson equation, 

f��� , in the region � �mm10mm,0�x , and 1�f . The 

prescribed boundary conditions are as follows, � � V00 �� ,
and � � V10010 ��  are the Dirichlet boundary conditions. 
The interval has been divided into four elements, and there 
are three unknown scalar potentials. Applying the weak form 
for the differential equation, the assembled system of linear 
equations for three unknown potentials can be obtained as 
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Using the formulas from section 2, EKW ���  and Pb � ,
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can be got. The diagonal elements of the matrix W  can be 
neglected, because the resistors iiR  are between nodes with 
the same potential, when using identity activation function. 
The circuit can be built up according to the equations (9) 
using network analyzer software, as plotted in Fig.3 (units are 
in SI system). The processing element (PE) contains a voltage 
controlled voltage sources and a capacitor, FCi �1� .

Fig.3. HNN with three neurons 

Hopfield type neural networks can be applied as a 
hardware tool to solve linear FEM problems. Some 
applications in 2D will be introduced in the full paper. 
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Abstract – Different ways to evaluate the modeling error in the 
context of numerical simulations of electromagnetic devices are 
proposed. The goal is to validate the use of the Analysis of Variance to 
discriminate factors acting on responses of an electromechanical system. 
It allows to reduce the number of factors to be taken into consideration 
in subsequent optimization processes. 

INTRODUCTION

Numerical models in electromagnetism have reached a so 
sophisticated level that they now stand as virtual prototypes. 
Varying the different parameters that control the 
performances of a given device, provides the designer a 
powerful tool to explore the design space. 

The following step is to use automatic optimization 
methods. But a question arises: are all the candidate 
parameters really significant? The answer could be to 
compare the effect of a factor to the modeling error, assuming 
that this one exists and can be calculated.  

Here, two different approaches are proposed and 
compared on the 2D finite element model of an eddy current 
brake used for railway applications.  

EXPERIMENTAL DESIGN METHOD

The Experimental Design Method (EDM) gives the ability 
to pre-determine the experiments (the simulations) to 
perform, so as to obtain the best modeling of a function, the 
response, according to input parameters, the factors. EDM is 
generally split up into two successive stages. The first one is 
the Screening analysis [1]; it is a qualitative study which 
allows to determine, among a set of factors, the influent ones. 
The second stage is called Response Surface Methodology
[2]; its quantitative character gives the possibility to analyze 
precisely the variations of the response with respect to the 
influent factors. 

Analysis of variance 

The Screening analysis is based on 2-level fractional 
factorial designs that allow to easily compute the aliases, that 
is the sum of factor and interaction effects. The next step is to 
perform an Analysis of Variance (ANOVA) to compare the 
variance of the aliases to the experimental one, calculated as 
the residual. Under the null hypothesis that aliases have no 

effect, both variances are the same and their ratio follows the 
Fisher-Snedecor law. 

In the case of experiments, the residual variance can be 
estimated by repeating the same experiment that give 
different results. But in the case of numerical simulations, 
repetitions give always the same result. Does it show that, in 
the case of numerical modeling, the modeling error does not 
exist? If two different users simulate the same test case, it is 
well known that the result will be different, leading to two 
estimations of the same quantity, and demonstrating the 
existence of the modeling error. 

When using numerical simulations, that is virtual 
experiments, two approaches can be considered to estimate 
the modeling error. The first one proposes to build the 
residual variance from high order interactions between 
factors. The interaction values can be easily obtained by the 
calculation of the polynomial model involving the response 
and the factors; this is achieved by using all the results of an 
Experimental Design. For the second approach, the 
experimental errors are estimated, and are used to build the 
reference variance. The simulations are voluntarily slightly 
modified in order to create a dispersion of results allowing 
then to build the experimental variance. 

These two construction modes of the experimental 
variance are presented and compared in two circumstances: a 
global and a local analysis. 

The realization of each design of experiments is made 
completely automatic thanks to the use of an optimization 
manager, Sophemis [3]. 

TEST CASE

To illustrate the evaluation of the experimental error on 
virtual experiments, a relatively simple example is 
considered. It is an electromagnetic brake, used for railway 
applications. This device is fixed under certain bogies, over 
the rails. It consists of a succession of poles, each of them 
surrounded by a coil supplied with direct current. The 
displacement of the brake with respect to the rail, induces 
eddy currents in the rail, producing then a braking force. In 
figure 1, a plane view of one pole is presented, with the 
corresponding geometrical factors. In order to integrate the 
3D eddy current trajectory in the rail, the equivalent 
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conductivity σ of the rail has been considered in the 2D 
parameterised model [4]. 

e : air-gap width       
Hp : pole height
Hy : yoke width
NI : Ampere - turns
       (or J: current density)
Lbp : bottom pole width  
L(Npol): pole pitch or       
              number of poles    

Fig. 1: Plane view of one pole and parameters

EXPERIMENTAL ERROR EVALUATIONS

Global analysis over a region 

Approach 1 - A Screening Design of Experiments is used, 
in order to calculate the braking force values for different 
configurations of the six geometrical factors (Fig. 1).  

This analysis allows, in the same time, to determine the 
significant factors among the six ones. The absolute influence 
of the different factors and of their interactions on the braking 
force (brf) variations are obtained thanks to the ANOVA.  

By default, the reference residual variance is built from all 
the interactions terms. Therefore, this variance depends on the 
model deduced from the design results.  

In order to avoid any confusing of effects of the main 
factors with their interactions, a full factorial design 26 (64 
simulations) is chosen. The time cost of one simulation is 
lower than a few minutes. 

Tab. 1.  Effects of main factors on the braking force (N/mm) 
 (v= 200 km/h) – Approach 1

Factors Effects Variance Significant (n %) 
Npol -5.31 1807.4 Yes  (100)
Hy 1.92 235.65 Yes (100) 
e -1.09 76.27 Yes (99.9)

NI (j) 0.45 12.96 Yes (95.85)
Lbp -0.264 4.45 No (77.01) 
Hp 0.13 1.076 No (43.82)

(NI total constant – the reference residual variance is 3.03)

The ANOVA shows that only 4 parameters are really 
significant (>95%) with respect to the braking force 
variations: Npol, Hy, e and NI(j). 

Approach 2 - In order to determine the experimental 
variance, the same design is computed with 4 different 
models using OPERA-2D [5]: 

1. nb of nodes = 1000; up-winding technique not used; 
2. nb of nodes = 1500; up-winding technique applied; 
3. number of nodes doubled; 
4. mesh refinement option selected. 

Indeed, for each simulation, different results are obtained, 
as shown for example in Table 2, for 4 different experiments : 

Tab. 2.  Effects of different meshes and options on the braking force (N/mm) 
 (v= 200 km/h) – Approach 2 

Case Model 1 Model 2 Model 3 Model 4 Variance 
1 9.6 9.9 9.95 9.96 0.0255 
2 17.8 18.2 18.24 18.248 0.029 
3 10.63 10.82 10.86 10.91 0.0157 
4 8.5 8.7 8.73 8.8 0.0126 

(NI total constant) 
Case 1 : Npol = 10, Hy = 30mm, Lbp = -30%, j=6A/mm2, e=7mm, 
Hp=101mm; Case 2 : Npol = 6; Case 3 : Npol = 10, Hy = 60mm; 

Case 4 : e = 9mm. 

A global experimental variance can be deduced from the 
variances calculated for each of the 64 experiments of the 
design. It equals approximately 0.029.

Tab. 3.  Comparison between residual variances 
Order of 

interaction terms 
Residual variance 

(Approach 1)
Experimental variance

(Approach 2)
5+6 0.00111524   

4+5+6 0.0234709  0.02907487 
3+4+5+6 0.32956587   

2+3+4+5+6 3.03562416   

Table 3 shows how to compare the residual variance built 
from high order factor interactions and the experimental 
variance deduced from the repetitions of an experimental 
design, achieved through different simulation configurations. 

Local analysis around a point 

The second approach applies well to a single 
configuration of the factor values. Around this point, the 
influence of disturbing parameters are tested. In the present 
case, the precision of the factor values and the mesh 
construction mode are considered. This approach gives the 
experimenter an evaluation of the uncertainty relative to the 
simulation results given by finite element simulations.  

CONCLUSION

This study validates the use of the ANOVA in the 
particular case of virtual experiments, particularly for 
screening of significant factors. 

In the full paper, more details will be given.  
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Abstract−−−−−A linear-system solver has been developed by using the product-

type CG method as a preconditioner and it is applied to the BEM-type linear

system. The results of computations show that the CPU time required for

the new solver is about half as much as that for the Gaussian elimination.

Therefore, the new solver is a powerful tool for solving the BEM-type linear

system.

INTRODUCTION

Recently, the boundary element method (BEM) has been

applied to the electromagnetic field computations and has yielded

excellent results. When discretized by using the BEM, the

boundary-value problem of the linear elliptic partial differential

equations is transformed to the linear system. Throughout the

present paper, the linear system is called the BEM-type linear

system. In a large-scale simulation by using the BEM, the linear

system solver has become the rate-determining stage. In this sense,

the development of the fast solver has been desired.

Since the BEM-type linear system has not a diagonal-dominant

coefficient matrix, we can not solve it by using stationary iterative

methods such as the RB Gauss-Seidel method and the SOR

method. Furthermore, its matrix is dense. For this reason, the

Gaussian elimination has been adopted as the solver of the BEM-

type linear system. On the other hand, the conjugate gradient (CG)

methods have been recently developed to be applied to the

nonsymmetric linear system including the BEM-type linear

system. In addition, a preconditioning has been investigated to

enhance the convergence property of the CG methods.

The purpose of the present study is to develop a new

preconditioning for the generalized minimal residual (GMRES)

method [1]. In addition, we investigate the applicability of the

GMRES with the new preconditioning to the BEM-type linear

system.

GMRESWITH VARIABLE PRECONDITIONING

In general, a preconditioning is the technique in which the

linear system Ax = b is transformed to A*x* = b* by use of the

regular matrices, P and Q. Here, A*, x* and b* are given by

A* = P−TAQ−1, x* = Qx and b* = P−Tb, respectively. In the following,

the residuals r* and r are defined by r* = b* − Ax* and r = b − Ax,

respectively. Since the matrix P is chosen such that P = E for the

right preconditioning, the residuals satisfy r = r*. Hence, the CG

algorithm can be reconstructed easily. For this reason, the right

preconditioning is widely used for the CG methods. In using the

GMRES with the right preconditioning, we must calculate the

productQ−1u at each iteration cycle. The product has been so far

evaluated through the backward substitution process after Q was

determined by means of the incomplete LU decomposition.

Recently, Abe et al. [2] have developed a variable

preconditioning in which Q−1u is computed by using the iterative

method. Since Q is chosen such that Q ≈ A in the preconditioning,

Q−1u is nearly equal to A−1u. On the other hand, the numerical

solutionz of the linear system Aw = u can be regarded as the

approximate value of A−1u. For this reason, Q−1u is replaced with

z in the variable preconditioned CG method. In order to obtain the

approximation solution z, we use the iterative method. In the

method, both ||u − Az|| / ||u|| < δ and n < N
max

 are adopted as the

termination condition. Here,δ is a constant. In addition, n and

N
max

 denote the iteration number and the maximum iteration

number, respectively. The above procedure is repeated until the

residual norm ||r||  / ||b|| becomes less than 10−15. Throughout this

paper, we adopt the product-type CG method [3] as the

preconditioner to a variable preconditioned GMRES.

GMRESWITH NEW PRECONDITIONING

As is well known, the residual norm of the GMRES decreases

monotonously. After the residual norm falls rapidly in the initial

steps, it begins to decrease slowly with an iteration number. In

order to improve the reduction rate, we have developed a new

preconditioning and have incorporated it to the GMRES. In the

resulting solver, the solution of the linear system is iteratively

determined by using the following two steps:
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Step 1.The product-type method is employed to obtain the

solution which satisfies either ||r|| / ||r
0
|| < ε

p
 or n < M

max
.

Here,ε
p
 is a constant and M

max
 denotes the maximum

iteration number.

Step 2. By assuming the above approximate solution as an initial

guess, the GMRES is applied to the improvement of the

accuracy of the solution.

The above two steps are repeated until the residual norm ||r|| / ||b||
becomes less than 10−15. Throughout the present paper, the above

solver is called a restart-preconditioned GMRES.

NUMERICAL RESULTS

As an example, we consider the linear system from the BEM

discretization of the 2D Laplace problem over (0, 2) × (0, 5) with

the Dirichlet condition: u = cosx sinhy + sinx coshy on the

boundary. The resulting linear system has 4000 unknowns and a

nonsymmetric dense matrix. Let us solve the linear system by use

of both a variable preconditioned and a restart-preconditioned

GMRES. Here, all components of the initial guess vector are

assumed to be unity, and the GMRES is restarted in every 25

steps. Moreover, the CGS and the GPBiCG are adopted as the

preconditioner to both a variable preconditioned and a restart-

preconditioned GMRES. The parameters of the preconditioning

are fixed as follows: δ = ε
p
 = 0.1 and N

max
 = M

max
 = 50.

Figures 1(a) and (b) indicate the residual histories of a variable

preconditioned and a restart-preconditioned GMRES, respectively.

For the case where the GPBiCG is adopted as a preconditioner,

the residual norm of both the preconditioned solvers decreases

monotonously with an iteration number. On the other hand, the

residual norm shows an irregular behavior when the CGS is

adopted as the preconditioner. Furthermore, the iteration number

required for the convergence is estimated and is called as a

convergent iteration number. The convergent iteration number for

the variable preconditioned GMRES is much less than that for

the restart-preconditioned GMRES. The CPU time is measured

for the Gaussian elimination and the preconditioned GMRESs.

The ratio τ / τ
G
 of the CPU times is tabulated in Table I. Here, τ

and τ
G
 denote the CPU time required for the preconditioned

GMRES and that for the Gaussian elimination, respectively. This

table indicates that both preconditioned methods give the

converged solutions faster than the Gaussian elimination.

Moreover, the restart-preconditioned GMRES has almost the same

convergence speed as the variable one.

From the above results, we can conclude that the restart-

preconditioned GMRES as well as the variable preconditioned

one is a powerful tool for solving the BEM-type linear system.
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TABLE I. RATIO τ / τ
G

OF CPU TIME.

Preconditioner Variable Preconditioning Restart-Preconditioning

CGS 0.63 0.62

GPBiCG 0.41 0.52

(b)

Fig. 1. Residual histories of (a) a variable preconditioned and (b) a restart-

preconditioned GMRES. Here, the CGS () and the GPBiCG ( ) are employed

as the preconditioner. In both figures, the residual history of the unpreconditioned

GMRES(25) is also indicated by the symbol.
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Abstract—The iterative solution for the linear system obtained by the meshless
approach is investigated. The meshless local Petrov-Galerkin (MLPG) method is
based on the local domain weak form, and the trial and the test functions are taken
from the different functional spaces. Consequently, the coefficient matrix of the lin-
ear system becomes banded and asymmetric. In this study, BiCGSTAB, GPBiCG
and GMRES methods are employed for the solution of the linear system obtained
by MLPG method. The results of computations show that the BiCGSTAB and the
GPBiCG methods do not give a converged solution in finite iterations. On the other
hand, the GMRES method converges after 250 iterations in case of the 256 × 256
linear system.

I

The mesh generation procedure must be needed before us-

ing the general finite element method (FEM) for the solution

of the partial differential equations. However, it costs a lot of

time to divide the region into a set of finite elements. Thus,

the time required for discretizing the partial differential equa-

tion or solving the resulting linear system is much shorter than

that for the element generation. On the other hand, the mesh-

less approach does not require finite elements of a geometrical

structure. The necessary information is only locations of nodes

which are scattered in the region and on the boundary. For

these reasons, various meshless approaches have been devel-

oped, such as the diffuse element method [1], the Element-Free

Galerkin (EFG) method [2] and the Meshless Local Petrov-

Galerkin (MLPG) method [3].

Although the MLPG method is one of the meshless ap-

proaches, it is widely different from the diffuse element method

and the EFG method. The trial and the test functions are taken

from the different functional spaces in the MLPG method,

whereas they are taken from the same functional space in other

meshless approaches. Furthermore, the weak form is derived

on the local domain. Consequently, the coefficient matrix

of the linear system becomes banded and asymmetric in the

MLPG method.

The purpose of the present paper is to apply the BiCGSTAB

[4], the GPBiCG [5] and the GMRES [6] to the solution of

the linear system obtained by the MLPG method and to eluci-

date the numerical character of the linear system obtained by

MLPG.

M A

In this section, we derive the weak form of the Poisson

problem and discretize it by means of the MLPG method.

In this study, we use the rectangular two-dimensional region

Ω ≡ [0, 1] × [0, 1] and its boundary is denoted by Γ. The gov-

erning equation is expressed as

−∆u = f , (1)

where u(x, y) and f (x, y) denote the unknown and the given

functions, respectively. Furthermore, the boundary condition

is assumed as follows:

u = ū. (2)

Here, ū denotes the given function.

To approximate the function u(x, y), let us first scatter M
nodes in the domain Ω and on the boundary Γ, and assign the

weight functions with compact supports to the nodes. In this

study, the weight function is defined as follows:

wi(x) =


e(−ri/c)2 − e−(R/c)2

1 − e−(R/c)2
ri ≤ R,

0 ri > R.

(3)

Here, R denotes the size of the support for the weight function

wi(x) and ri is defined as ri = |x−xi|. Moreover, c is a constant.

By using the moving least squares (MLS) approximation, the

shape functions are given by

φi(x) = p(x)T A(x)−1bi(x), (4)

where components of the vector p(x) are monomials of

the space variables, x and y. In this study, p(x)T =[
1 x y x2 xy y2

]
is employed for the quadratic MLS

approximation. Furthermore, the matrix A(x) and the vector

bi(x) are defined by

A(x) =

M∑
i=1

wi(x)p(xi)p(xi)
T , (5)

bi(x) = wi(x)p(xi). (6)

Under the above assumption, the trial function u(x) can be ex-

panded in the form,

u(x) =

M∑
i=1

uiφi(x). (7)

In general, the FEM and the EFG are based on the global

Galerkin formulation. In this contrast, the MLPG method is

essentially based on the weak form over the local sub-domain

Ωi. For the sub-domain Ωi, we choose a circle of radius R
whose center is placed at xi. Thus, the sub-domain Ωi agrees

with the support of the weight function wi(x). Equation (1) and

its associate boundary condition on Γi are shown to be equiva-

lent to the following local weighted residual expression:∫
Ωi

(∆u − f ) wi dΩ − α
∫
Γi

(u − ū) wi dΓ = 0, (8)
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where u is a trial function and α is a penalty parameter. Be-

sides, Γi denotes a part of the boundary Γ which is clipped off

by the boundary of Ωi.

Following the standard manners of the MLPG method and

the MLS approximation, we can discretize (8) as follows:

Bu = f , (9)

where the matrix B and vector f are defined by

(B)i j =

∫
Ωi

∇wi ·∇φ j dΩ+α

∫
Γi

wi φ j dΓ−
∫
Γi

wi

∂φ j

∂n
dΓ, (10)

( f )i = α

∫
Γi

u wi dΓ −
∫
Γi

f wi dΓ. (11)

Here, ( )i j and ( )i represent the (i, j)-th matrix element and

the i-th vector component, respectively. Moreover, n denotes

the unit normal vector whose direction is outward to Ωi. In

this way, the solution of the Poisson problem is determined by

solving (9) numerically.

N R

As is apparent from (10), the coefficient matrix of the linear

system obtained from the MLPG method becomes asymmet-

ric. In addition, it is not clear whether the matrix becomes

diagonal-dominant or not. Therefore, the LU decomposition

method or the conjugate gradient (CG) method can be em-

ployed for the solution. However, as the number of nodes is

increased, the coefficient matrix becomes more sparse. For

these reasons, the BiCGSTAB, the GPBiCG and the GMRES

methods are employed for the solution of the linear system (9).

In Fig.1, we show the residual histories for the BiCGSTAB

and the GPBiCG. Here, the residual norm for the approximate

solution v is defined by

r =
‖ f − Bv‖∞
‖ f‖∞ , (12)

where ‖ ‖∞ denotes the infinity norm of the vector. The termi-

nation condition for the solver of (9) is r ≤ 10−12. Through

the present paper, the size of the linear system is fixed as

256 × 256. This figure indicates that both the BiCGSTAB and

the GPBiCG method do not give a converged solution even af-

ter 300 iterations and that the residual behaves irregularly for

both methods. This is mainly because the condition number

of the coefficient matrix is large due to the penalty parameter.

Besides, the coefficient matrix becomes a nearly singular one.

Next, we show the residual histories for the GMRES

method. Figure 2 shows that the residual norm stagnates imme-

diately after the restart. On the other hand, in case of k = 256,

the residual norm converges after 250 iterations. Here, k de-

notes the restart parameter. Consequently, this figure sug-

gests that the GMRES method without a restart is more effec-

tive for the linear system obtained by the MLPG method than

the method with a restart or the BiCGSTAB and the GPBiCG

method.
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Fig. 1. The residual histories for the BiCGSTAB and the GPBiCG.
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Fig. 2. The residual histories for the GMRES. Here, k denotes the restart
parameter of the GMRES.

From the above results, we can conclude that the

BiCGSTAB and the GPBiCG method are unsuitable for the

linear system obtained by the MLPG. On the other hand, the

GMRES method without a restart is effective for the linear sys-

tem.
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Abstract  –  In this paper, we propose a method to estimate time and 
space discretisation errors of a 3D FEM model coupled with circuit 
equations. The estimator is based on the non-verification of the 
constitutive relationship which requires the calculation of admissible 
fields. The technique to calculate such fields on the whole time domain 
is described for the A-formulation. This estimator is tested on a 
transformer at no load and different methods for time discretisation are 
studied and compared. 

INTRODUCTION

For a numerical study of magnetostatic problem, FEM is 
generally employed. The space discretisation using finite 
element leads to numerical errors. These errors, directly 
linked with the mesh quality, can be estimated accurately. 
Among the estimators proposed, those based on the non 
verification of the constitutive relationship are interesting 
because they enable to have a direct link with the exact 
solution [1,2]. To model a magnetostatic system coupled with 
the external circuit, it is necessary to add to FEM a time 
differential equation. This one links the time derivative of the 
flux to the current. Consequently, numerical errors due to the 
time discretisation appear which add themselves to the 
numerical error due to space discretisation. 

To reduce error due to time discretisation, it is necessary 
to use a small time step but it also increases the computation 
time. Moreover, this error becomes negligible versus the error 
involved by the space discretisation, which is given by the 
features of the mesh. So, a reduction of the time step doesn’t 
reduce the numerical error significantly. The problem is then 
the choice of the time step versus the quality of the mesh. To 
find an issue, a way is to use an estimator, which enables to 
determine error involved by time and space discretisations. 

In this communication, we propose an error estimator in 
the case of the vector potential formulation coupled with 
circuit equation.  First, we present the error estimator, which 
requires the calculation of two admissible fields on the time 
domain from the discrete solutions. This method is developed 
for the �-method. As example of application we use this 
estimator to study a transformer at no-load supplied by a 
sinusoidal voltage.      

ERROR ESTIMATION OF THE SPATIAL DISCRETIZATION 

We consider a domain D with a boundary �. We assume 
to have only one inductor flowing by current i. In 
magnetostatics, the magnetic field H and the magnetic flux 
density B verify Maxwell’s equations given by:  

iNcurlH �  with 0nH ��  on �H (1)
0div �B  with 0. �nB on �B (2)

where N is a turn density vector which depends on the 
inductor shape, �B and �H two complementary parts of � and 
n the outward normal of �. To take into account the material 
behavior, the fields B and H are linked by the constitutive 
relationship : 

)(HfB � (3)
This function is supposed to be univoc (hysteresis effect 

in the ferromagnetic media is neglected) and strictly 
increasing. To solve these equations, potential formulations 
are generally used such as, for example, the vector potential 
formulation (A-formulation). The discretisation of such 
formulations is carried out using functional spaces (Whitney’s 
element spaces for instance) with finite dimensions. The 
discrete solution is then different from the exact one which 
satisfies (1),(2) and (3) simultaneously. To estimate the 
discretisation error, the function D�  is introduced such that 
[1]:

dDˆˆ)()()ˆ,ˆ(
D

ˆ

0

ˆ

0
1

D � � � �
�

�

�
�

�
���	�
�

� BHdhhfdbbfBH
B H    (4)

with )ˆ,ˆ( BH  a couple of admissible fields (i.e. which verifies 
(1) and (2)). We can note that the function D� is always 

positive. If it is equal to zero, the couple )ˆ,ˆ( BH  is the exact 
solution because it satisfies (1), (2) and the constitutive 
relationship (3). In the case of the A-formulation, the 
magnetic flux density denoted BA (BA=curl A) is admissible 
but not HA (HA=f(BA) [3]. Different methods have already 
been proposed to calculate an admissible AĤ from HA to 
carry out an efficient error estimation using D� [2].

ERROR ESTIMATION WITH THE COUPLING OF THE EXTERNAL CIRCUIT

To couple magnetostatics equations with an external 
circuit, we use the time differential equation linking the 
voltage v(t), the current i(t) and the linkage flux flowing the 
inductor. In the case of A-formulation, the equation can be 
written: 

)t(v)t(irdD
dt
d

D

���

�
NA (5)

with r the inductor resistance. Then, we have to solve an 
system of 4 equations (1),(2),(3) and (5) on the domain D and 
on the time interval [0,T]. More than a space discretisation, 
we have to carry out a time discretisation of (5). To estimate 
simultaneously the space and time discretisation error, we 
introduce a function  ]T,0[Dx� such that :  
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dt))t(ˆ),t(ˆ())t(ˆ),t(ˆ(
T

0
DT]Dx[0, � ��� HBHB

(6)

with ))t(ˆ),t(ˆ( HB  a couple of admissible fields  which verify 
(1), (2) and (5) on the time and space domain D x [0,T]. The 
function ]T,0[Dx�  is always positive since D� is positive as 
well. The function ]T,0[Dx�  is equal to zero if the 

couple ))t(ˆ),t(ˆ( HB  is the exact solution since it verifies the 
constitutive law (3) on D x [0,T]. The problem is then to 
construct the field ))t(ˆ),t(ˆ( HB from the solution using FEM. 
A method has been already proposed to calculate such field  
[5]. However this method can only be used with the Euler 
implicit scheme for time discretisation and is not very 
efficient when the resistance value r is weak. In the following, 
we present a method, which can be applied with the -method 
in the case of the A-formulation. 

CALCULATION OF ADMISSIBLE  FIELDS

The discretisation of equation (5) with the -method gives 
in the case of the A-formulation: 

1-nn1-nn
D

1 v)v-(1iri)r-(1dD
t

�����

�

�

�
� NAA nn (7)

with �t the time step, An, in and vn are the values of vector 
potential, current and voltage at tn =n �t. The solution using 
FEM leads a set of value (An,in) at each time step tn. Using 
the construction already developed in magnetostatics (see 
previous section), we can easily calculate at each time step tn
a magnetic flux density n,

ˆ
AB  ( n,

ˆ
AB = curl An) and a 

magnetic field n,
ˆ

AH  which satisfies (1) with i=in [2]. From 

this set of couples ( n,
ˆ

AB , n,
ˆ

AH ), admissible fields 

))t(ˆ),t(ˆ( HB  on D x [0,T] can be deduced. On each interval 
[tn-1,tn], The current i(t) is assumed to be constant and equal to 
(1-�) in + � in-1. Then, we have on each interval : 

����� 1-n,n,
ˆ)1(ˆ)t(ˆ

AA HHH (8)

� �

�

�

�

�

�

�

�

��

�	




	

�

n

nn
n,n

1-n,n, tgˆ)tt(
t

ˆˆ
)t(ˆ

A
AA B

BB
B

(9)

with � � � �
�

���� dtv)v(1v(t)tg 1-nnn and
�

���

D
n dDNAn

We can note that )t(B̂  verifies (2) and (5) ( )t(B̂ =curl A(t)) . 

and )t(Ĥ  verifies also equation (1) on the whole domain 

Dx[0,T]. From this couple ))t(ˆ),t(ˆ( HB , we can estimate the 
numerical error by calculating the function ]T,0[Dx� .

APPLICATION

To test the proposed method of error estimation, we 
consider a transformer at no load supplied by a sinusoidal 

voltage. The magnitude is equal to 28 V and the frequency 
equal to 25KHz. The primary winding resistance is 40m�.
Two meshes have been considered (fig. 1). The first one, 
denoted M1 has 2560 elements and 545 nodes. The second 
one, denoted M2, has 6627 elements and 1281 nodes. The 
time interval corresponds to the first period of the voltage 
(T=40 �s). On figure 2, we compare the error ]T,0[Dx�  of M1 
and M2 for different number of time step  on T and two 
values of �. We can see that the method gives expected 
results. First, the error decreases with the time step. Best 
results are obtained with �=0.5 with large time step but the 
gap between results with �=1 decrease with �t. Finally, the 
error is weaker with the finest mesh M2. However we can see 
also that the using of weaker time step doesn’t improve the 
results (from 20 time steps per period to 40). 

Fig. 1. Meshes  M1 (left) and  M2 (right) 
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CONCLUSION

A method to estimate the global error due to space and 
time discretisation has been developed and discussed. 
Numerical results on a simple example have shown that this 
one can be used in order to obtain a compromise between 
computation time and accuracy. In fact, it enables to adapt the 
time step versus the quality of the mesh. 
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Abstract - This paper discusses development of the parallel multigrid
method for finite element analysis using Java. The multigrid method
can significantly reduce computational time in comparison with
conventional linear solvers such as ICCG. However, the multigrid
method requires a large quantity of memory in large-scale finite
element analysis. For this reason, we develop the parallel multigrid
method using several computers. This method enables to reduce the
required memory of each computer. We adopt Java language that is
superior to other languages in developing large-scale programs  and
programs using network.

INTRODUCTION

The multigrid method has been applied to electromagnetic
field problems so far [1], to show that it can significantly
reduce computational time in comparison with conventional
linear solvers such as ICCG. However, multigrid method
requires a large quantity of memory in large-scale finite
element analysis. For this reason, we develop the parallel
multigrid method using several computers. This enables to
reduce the required memory of each computer.

Java [2] is the computer language which was developed by
Sun Microsystems in 1995. Because the syntax of Java is
quite similar to C and C++, it is easy to convert from
existing source codes to Java source code. Adapting object-
oriented style, Java is superior to other old languages such as
Fortran in developing large-scale programs and maintenance.
Multi-platform is one of the features of Java, whose
compiler converts from source code to object code called
byte code. The byte code runs on JVM (Java Virtual
Machine) which is a kind of program on OS. JVM absorbs
the difference of architecture of computer systems. Without
recompile, Java program runs on various computer systems
where JVM can run. It is another feature of Java that it
makes possible to develop network applications with ease.

MULTIGRID METHOD

It is known that the linear solvers such as Gauss-Seidel
and CG methods tend to eliminate the high-frequency
components of the residue in the system equation more
rapidly than the low-frequency components. The multigrid
method is based on this property, that is, the high-frequency
residual components are eliminated on a fine mesh by small
numbers of iterations of the linear solver (smoother). The
remained residual components are then projected onto a
more coarse mesh, in which they now have high frequency
that can again be eliminated by small numbers of the
iterations. The multigrid method solves successively
performing these processes. This procedure is usually called
the coarse grid correction. Although there are many
variations in multigrid method, all these variations are based

on the coarse grid correction. The procedure of the two-grid
V-cycle method that is the simplest multigrid method is
described below.

Step1 (Smoothing)

The smoothing operation is applied to the system equation

　[Af]{x}= {b}, (1)

for the fine mesh to obtain approximate solution }~{x ,

where [Af] denotes the system matrix defined on the fine
mesh. In this step, the high-frequency components in the
solution error are eliminated.

Step2
The residual vector {rf} corresponding to the approximate

solution }~{x , is calculated,

　{rf}={b} - [Af] }~{x . (2)

Step3 (Restriction)
The residual vector is projected onto a coarser mesh using

the restriction matrix [R],

　 }]{R[}{ fc rr = , (3)

Step4
The residual equation in coarse mesh is solved to obtain

the error vector {ec} corresponding to the residual vector
{rc},

　　[Ac]{ec}= {rc}, (4)

where [Ac] is the system matrix defined in the coarse mesh.
It takes short time to solve (4) because there are small
number of unknowns in (4).

Step5 (Prolongation)

The error vector is projected onto the fine mesh using the

prolongation matrix [P],

　{ef}=[P]{ec}, (5)

where [P] is usually chosen as the transpose of [R].
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Step6
The solution }~{x  obtained in Step1 is corrected using error

vector {ef},

　{xnew}= }~{x +{ef}. (6)

Step7 (Post-Smoothing)
The smoothing operation is applied to the system equation

again. This procedure is called post-smoothing. After post-
smoothing, the convergence of the solution is tested. If
convergence condition is not satisfied, we go back to Step-2.

PARALLEL MULTIGRID

 In this paper, we pay attention to the Gauss-Seidel
smoother that plays a crucial role in multigrid method. The
standard Gauss-Seidel algorithm is

ii
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jij
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where
k
ix i-th component of the solution vector in k-th iteration step

aij i-th row j-th column component of the system matrix
bi i-th component of the right hand side vector.

In practical program coding, the diagonal and the upper

triangle of the matrix [A] are stored because of symmetry

matrix. The proposed algorithm for parallel computing is

for (k=1,2, ....) {
ax[1,2, ... n] = 0 ;
for (i = 1,2,..., n){
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jiji
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i axaiaxbx /][
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+ (8-1)

for (j = i+1, i+2, ... , n){
ax[j] = ax[j] + aij xi

k+1 ; (8-2)
end for(j)

end for(i)
end for(k)

Fig.1 shows an example of parallel calculation using three

PC. The suffix f and b in Fig. 1 denote the calculation (8-1)

and (8-2) respectively.

NUMERICAL RESULTS

 We analyze a simple magnetostatic problem using finite
element method.  Three personal computers with Pentium3
933MHz~1.26GHz are used. These PC connect the network
(100BASE-TX). The data of array x[] and ax[] in (8) are
communicated with each PC using TCP/IP Sockets that is

one of the standard Java API(Application Program
Interface) .

Fig. 2 shows the CPU time of Gauss-Seidel smoothing (10
times iterations). In the small number of unknowns, the
proposed method has worse performance than the
conventional method due to the time of preparation for
TCP/IP Socket. However, we can see that the difference of
time between these methods decreases with the number of
unknowns. Moreover, the required memory of each PC in
proposed method is 1/3 of that in conventional method.

Fig. 1 Example of parallel calculation

Fig. 2 Computation Time
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Abstract � Inexact Newton solvers can offer many attractive 
features for the solution of non linear problem in the field of 
electromagnetics. A critical point for the optimal set up of the solver is 
the choice of the best algorithm for the evaluation of the approximate 
solutions of the linear systems at each Newton step, and the most 
effective preconditioning strategy. In this paper, the NITSOL method is 
proposed for the solution of a non linear linear magnetostatic problem. 
The problem has been discretized by means of a finite element approach. 
The GMRES method has been adopted as linear solver, and four 
preconditioners have been tested. The performance of the procedure are 
evaluated for different meshes with increasing number of discretization 
points. 

INTRODUCTION

Newton solvers are well established methods for the 
calculation of a zero of a non linear function F, and have 
successfully applied to large scale problems in various 
scientific fields. An inexact solvers can improve the 
performance of the Newton method, utilising the inexact 
Newton condition [1]: 

� � � � � �kkkkk fFsfFfF ��� ' , (1)

where F’ is the Jacobian of the function F, sk is the solution 
increment at the k step and �k � [0.1) is a forcing term 
enhancing the efficiency of the convergence. Condition (1) 
yields a linear system at each non linear iteration, which is 
solved by means of a GMRES algorithm [2]. In the initial non 
linear iterations, a large forcing term avoids the risk of 
imposing an accuracy on the solution leading to substantial 
disagreement between F(f k +s k) and its linear approximation 
F(f k) + F’(f k)s k. When the solution is getting close to 
convergence, �k should tend to zero, and (1) gives the exact 
Newton condition: 

� � � � kkk sfFfF '�� (2)
As a general rule, the robustness and the convergence rate 

of GMRES are strictly dependent on the preconditioner 
quality rather than on the other  factors. One of the reasons is 
that the preconditioner can be changed at each step, to fit the 
problem in the best possible way. This capability can be 
really useful for some applications. 

MAGNETOSTATIC PROBLEM

A magnetostatic problem with a ferro-magnetic material 
has been considered. The physical formulation, constituted by 
the Maxwell equations and the material laws, yields the 
following equation: 

AB ��� , JA �
�
�

�

�

�
�

�

�

�	�	

�

1 . (3)

The non linear function F is found discretizing (3) in a 
two-dimensional symmetry frame by means of a weighted 
residual FEM approach: 

jK(a)a � , (4)

where a is the vector constituted by the nodal values of the 
unknown vector potential. 

PRECONDITIONING TECHNIQUEs

A preconditioner may be defined by performing an 
incomplete factorization of the original matrix K: such a 
matrix can be decomposed on the form K=LU – R , where L
and U are respectively the lower an the upper part of A, and 
R is the residual error of the factorization. 

This technique is rather easy to be implemented, but the 
residual error R could detain the convergence of an iterative 
system, due to the fact that the original matrix K is replaced 
by an approximate factorization. To solve this problem, it is 
necessary  to allow more fill-In of L and U over the original 
terms of lower and upper part of K.

A general algorithm for building an incomplete LU 
factorisation is to perform a Gaussian elimination, even with 
the possibility to drop some elements in some predetermined 
non-diagonal position.  

ILUK: As mentioned previously, an incomplete LU 
factorization may be too rough for bringing to convergence 
the solver. Thus a certain degree of fill-in is needed in order 
to supply a more accurate factorisation method. A level of 
fill-in is given to each element processed with the Gaussian 
elimination. At the first iteration of the Gaussian elimination, 
the first value of fill-in of the ki,j element of the sparse matrix 
K is:

.
;00 ,

,
�

�

�

�

�

�

�

�	

�

otherwise
jik

lev ji
ji   (5) 

At every iteration, the level of fill-in of each element is 
updated by: 

� �.1,min ,,,, ��� jkkijiji levlevlevlev  (6) 
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In ILUK, all elements that have a fill-in value that not exceed 
the decided fill-in degree are kept, while the others are 
discarded. 

ILUD: In ILUK approach, the elements dropped during 
the incomplete factorization are simply discarded. ILUD 
approach make the attempt to compensate this elimination by 
means of a certain variation to the left elements. The diagonal 
compensation technique provides to subtract the sum of all 
dropped elements into the main diagonal of the U matrix. At 
the end of the Gaussian elimination process, the raw i of U is: 

 ,)( *** ����

T
iiii eeruu    (7) 

were  is a parameter that can change between 0 and 1 for 
weighting the compensation, and e=(1,1,…,1)T.

ILUT: An ILU algorithm with threshold substitute with 
zero some matrix elements according to their magnitude. 
Such a method, allows to determine dynamically the zero-
pattern of the approximate matrix. In ILUT (p, ) technique, 
two different criteria are adopted. First, elements in upper and 
lower factorization are dropped when less than the relative 
tolerance i obtained multiplying  by the original norm of the  
i-th row. Second, in each rows is kept a number of elements 
not exceeding a user specified fill-in value. This in order to 
control the number of non-zero elements for row. 

ILUTP:  As a matter of fact, the ILUT algorithm can fail 
if it encounter a zero pivoting, an over or underflow 
condition, or it can simply terminate with an incomplete 
factorization that does not lead to a stable computing of the 
linear system. To solve these problems, a column pivoting 
could be implemented quite easily in ILUT algorithm by 
means of a permutation array. However, pivoting should be 
advantageous only in diagonal block of a certain size.  

APPLICATIONS

In order to gain information on which preconditioner is 
best suited to the problem requirement, the four 
preconditioning strategies has been applied to the linear 
problem. The problem has been discretized with four meshes 
with increasing number of mesh points: 1621 points (shown 
in Fig. 1), 6747 points,12150 points and 18830 points. 

In our tests, the best preconditioners seem to be ILUT and 
ILUTP, with a slight preference for the second, due to the 
more robust behaviour. In Fig. 2 are reported the best 
convergence rate of the GMRES algorithm coupled with the 
ILUT, ILUTP ILUk preconditioners. The convergence rate 
CR is defined as follow:  

� � � �NINVMMFRNIRNCR �� 10log ,  (8)

where IRN is the initial residual norm, FRN the final residual 
norm, NVMM the number of vector-matrix multiply and NI
the number of initializations of the GMRES solver. Actually, 
the higher convergence time is not related directly to the 
higher convergence rate: this is because with a high degree of 
fill-in increase the computational time requested for 
preconditioning. In Fig. 3 the best convergence time obtained 
by the preconditioned solver. The ILUK preconditioner has 
the best convergence rates slower than ILUT or ILUTP. The 
fourth preconditioner, the diagonal compensating ILUD, has 
not shown to be a valid strategy for the considered problem. 

When solving the non-linear problem, the NITSOL 
methods coupled with GMRES has been applied. The 
Jacobian matrix has been analytically evaluated, to increase 
the robustness of the procedure. The GMRES solver shows a 
dependence on the preconditioning strategy similar to the one 
found in the linear case.  
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Abstract�Equivalence phenomena for �eld discontinu�

ity and optimal �nite element discretizations are reported�

The e�ectiveness of �eld�discontinuity re�nement criteria

for achieving optimal �nite element discretizations is inves�

tigated experimentally� The criteria are examined directly

with �nite element solutions computed from optimally dis�

cretized systems� and for practical adaptive �nite element

electromagnetic analysis of modern complex systems�

Introduction

In recent years� signicant progress has been made on
the electromagnetic modeling� simulation and computer�
aided design of very complex systems� such as microelec�
tronic system interconnection �MSI� structures ���
 The
main di�culty with MSI analysis� for example� is that
a very large number of free modeling parameters are
needed to compute accurate and reliable simulations for
realistic systems
 The computational e�ort required for
the electromagnetic analysis of the complex� dense� and
irregularly routed arrays of high�speed interconnections
that comprise modern MSI structures is often be pro�
hibitive ���
 Yet such analyses are critical if MSI system
performance is to be simulated with condence


Currently� one promising way to overcome this com�
putational barrier is by using adaptive solver technologies
that are capable of intelligently evolving and improving an
e�cient distribution of DOF over the problem domain ���

Moreover� the study of error distributions corresponding
to optimal nite element discretizations has recently at�
tracted appreciable interest ���� ���� ���� ���
 An incentive
for this research focus stems from the potential benets
of identifying e�ective and reliable renement criteria� for
adaptive nite element analysis �AFEA�� based on a priori

characterizations of optimal discretization solution prop�
erties
 Such renement criteria can be used in practice for
e�ciently guiding adaptive nite element electromagnetic
solvers towards optimal accuracy solutions� without incur�
ring the prohibitive computational costs associated with
solving the optimal discretization problem directly ���

This may be useful for overcoming the current compu�
tational bottleneck in obtaining accurate electromagnetic
simulation results for complex modern systems


Field Discontinuity in Optimal Discretizations

The primary purpose of the present contribution is to
investigate the ability of practical eld�discontinuity re�
nement criteria to e�ectively reproduce the main mod�
eling characteristics of optimal nite element discretiza�
tions
 While eld�discontinuity renement criteria are
widely used and have been shown to be amongst the most
e�ective for AFEA in electromagnetics� their exact con�
nection to optimal nite element discretizations has yet to
be reported in the mainstream literature

In this work it is shown directly� for the rst time�

that the eld�discontinuity criteria considered can cor�
rectly identify optimal error distributions� without the ex�
pense of actually solving the optimal discretization prob�
lem
 Specically� the equivalence phenomenon is demon�
strated that eld�discontinuity is satised precisely for op�
timally discretized problem domains� whereas it is not
for non�optimal meshes
 It should be noted that the ex�
perimental data supporting this conclusion are based on
eld solutions obtained using an explicit formulation for
computing optimal discretizations directly� thus� the re�
sults computed under these conditions cannot be refuted

Namely� the formulation derived for general Helmholtz
systems in ��� was employed� which is based on simulta�
neously satisfying sets of optimization equations dened
for both the geometric discretization parameters �i
e
� el�
ement vertex positions� and the eld solution unknowns

In contrast� previous adaption studies reported with prac�
tical� but non optimal discretizations� have not been able
to provide the su�ciently rigorous conditions required for
examining the relationship between eld discontinuity re�
nement criteria and optimal nite element discretiza�
tions
 Therefore� the novelty of this work is� in part�
the use of optimally discretized benchmark systems for
evaluating this relationship

In addition� the operational value of eld�discontinuity

renement criteria is evaluated for practical electromag�
netic AFEA of principal device features present in mod�
ern MSI structures� which are known to pose challenging
problems in numerical modeling
 Although these types of
renement criteria are well established� the study of their
optimal discretization properties in AFEA for electromag�
netic simulation is new
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Results

Two simple ��D free�space examples are presented �rst�
in order to illustrate the equivalence phenomena of �eld�
discontinuity and optimal �nite element discretizations�
The equivalence phenomena for �eld�discontinuity and op�
timal discretizations for practical electromagnetic AFEA
are evaluated with a ��D Laplace test system and a ��D
high�frequency structure in the long version paper�

The ��D benchmark systems were �rst studied in �	
�
and are based on the classical point and line singularity
models in free�space� The objective for each benchmark
system is to compute the functional value based on the
resolution of a radial neighborhood close to the singu�
larity and spanning a ����fold decay in potential� the
point charge and line current� of magnitudes ����� C
and �� ��� A� respectively� are located at the origin� and
the two boundaries of both problem domains are set at
radial distances of ��� m and �� m away from the singu�
lar source distributions� It may be noted� that the �eld
solutions associated with the free�space point charge and
line current models contain the types of singularities as�
sociated with the sharp material corners and edges that
are present in many practical MSI structures ��
� Thus�
the primary feature of these test systems is the rapid �eld
solution variation close to the singularity� which has been
shown to drastically reduce the �nite element convergence
rate�

The results for the point and line singularity models
are given in Table I and Table II� respectively� To focus
ideas� a �eld discontinuity error measure ��
 was evalu�
ated for both uniform and globally optimal second�order
meshes� All results were computed using standard second�
order Lagrangian elements for the analysis of these ��D
examples� Furthermore� the results corresponding to the
optimal meshes� are based on solving the optimization
equations for the geometric discretization parameters ��
�
as previously explained� Hence� each of the optimal dis�
cretization results computed for these two benchmark sys�
tems represents the ideal mesh for a given number of
DOF� i�e�� the mesh that produces the most accurate so�
lution possible for the variational �nite element formula�
tion used ��
� In each case F Error indicates the error
in the global functional value� For the results reported
in Table I� E Error indicates the average error in the
electric �eld continuity at the element interfaces� Simi�
larly� in Table II� H Error indicates the average error in
the magnetic �eld continuity at the element interfaces�
It should be noted that� for the uniform discretizations�
the non�zero �eld�discontinuity quantities correctly indi�
cate a large error for the functional value� However� for
the optimal discretizations� the �eld�discontinuity errors
are identically zero� Hence� �eld discontinuity is satis�ed
exactly with respect to these optimal �nite element solu�

TABLE I
Numerical Results for Point Singularity Benchmark

Uniform Meshes Optimal Meshes

No� Elements F Error E Error F Error E Error

� ������ ������ 	��
�� ������

� ������ ������ 	����� ������

� ������ ��	��� ��
���� ������


 ������ ��		�	 ���
��� ������

�� ���	�� ��	��
 ������� ������
�� �
���� ������ ����
	� ������

�� ������ ���
�� ���	��� ������

�� 	����� �����	 ����
�� ������

TABLE II
Numerical Results for Line Singularity Benchmark

Uniform Meshes Optimal Meshes

No� Elements F Error H Error F Error H Error

� 		���� �����
 ��	��� ������

� ����	� ����	� ��
���� ������

� ������ ���
�� ���
��� ������

 ������ ������ ����
�� ������

�� ������ ������ ������� ������

�� 	�

	� ������ �����
� ������

�� ������ �����	 ������� ������

�� ��	��� �����	 ����	
� ������

tions� For each of the uniform and optimal second�order
solutions considered� the average error in �eld discontinu�
ity was calculated as the mean of the di�erence in �eld
values over each individual element interface� Thus� these
results demonstrate the equivalence phenomena for �eld
discontinuity and optimal discretizations for electrostatic
and magnetostatic �nite element solutions� The equiva�
lence phenomena will be further invested for a wider range
of practical problems in the long version paper�

References

��� A� Polycarpou� P� Tirkas and C� Balanis� IEEE Trans� MTT �
vol� ����	
� pp� ��������� �����

��� D� Giannacopoulos� IEEE Trans� Magn�� vol� ����
� pp� �	�
�	�� �		��

��� D� Giannacopoulos�Optimal Discretization�based Adaptive Fi�

nite Element Analysis for Electromagnetics� Ph�D� Thesis�
McGill University� �����

��� L� Janicke� A� Kost and P� A� Bastos� IEEE Trans� Magn��
vol� ����
� pp� �������	� �			�

��� L� Y� Li and P� Bettess� Com� Num� Meth� Eng�� vol� ��� pp�
������� �����

��� D� Giannacopoulos and S� McFee� IEEE Trans� Magn�� vol�
�	��
� pp� ��������� �����

��� J� P� Webb and B� Forghani� IEEE Trans� Magn�� vol� �	��
�
pp� ��������������

39Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



Multi-Grid Method for Eigenvalue Problem Associated with Newcomb Equation

Takashi Kanki
Japan Coast Guard Academy

5-1 Wakaba, Kure, Hiroshima 737-8512, Japan
e-mail: kanki@jcga.ac.jp

Abstract In a numerical method to compute the outer region
matching data including a plasma close to the marginal ideal MHD
stability, it is required to solve an eigenvalue problem and the associated 
singular equation for the Newcomb equation. An iterative method is
developed to solve the eigenvalue problem and the singular equation. In 
this method, the eigenvalue problem is replaced with an equivalent
nonlinear equation and a singular equation is derived from this
nonlinear equation by using Newton’s method. The multi-grid method
can be applied to this method. It is confirmed from the numerical results 
that this method is powerful for solving the eigenvalue problem and the
singular equation with numerical stability and high accuracy.

INTRODUCTION

In the asymptotic matching method to analyze the resistive 
MHD stability in tokamaks, the plasma is divided into two
regions: the outer region far from rational surfaces and the
thin inner layer around the rational surfaces [1]. In the outer
region, the motion of the plasma can be described by ideal
MHD equation without the nonideal MHD effects such as
inertia, electrical resistivity and viscosity. The equation in this 
region is called the Newcomb equation [2] which is a second
order ordinary differential equation with regular singular
points at the rational surfaces. In the thin inner layer, the
nonideal MHD effects must be taken into consideration.
However, the equations of the motion in the inner layer can
be sufficiently reduced. The solutions in both regions must be 
asymptotically matched so that the nonideal MHD motion of
the plasma is determined. The quantities to be matched are
called matching data. The Newcomb equation is
homogeneous and the solution is expressed as a linear
combination of the square integrable solution (small solution) 
and the non-square integrable solution (big solution). The
ratio of these solutions is called outer region matching data
[3]. It is required to compute this matching data with high
accuracy.

We developed a numerical method to compute the outer
region matching data for the plasma close to the marginal
MHD stability by solving the eigenvalue problem and the
associated singular equation[4]. This important example of
the plasma close to the marginal stability is the m=1
instabilities, where m represents poloidal mode number [5].
The multi-grid method [6] is applicable to this method
because the multi-grid method is effective not only for the
linear equations but also for the singular equation and the
eigenvalue problem [7]. The purpose of this study is to solve
the singular equation and the eigenvalue problem with regular 
singular points and to investigate the properties of the

numerical convergence. For this purpose, we perform detailed 
numerical experiment for the Newcomb equation in the m=1
theory.

NUMERICAL METHOD

The finite element method based on the variational
principle can be applied for the eigenvalue problem and the
singular equation associated with the one-dimensional
Newcomb equation. As the results, the eigenvalue problem is
expressed as

,ξλξ BA =                                       (1)
where A is a symmrtric matrix, B a symmetric positive

definite matrix, ξ  an eigenvector and λ an eigenvalue. Then

the singular equation for ξ  and ν
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is derived from the variational principle. Here the scalar ν is
Lagrangian multiplier, b a given vector and 0ξ the
eigenvector corresponding to the eigenvalue in (1). 

The eigenvalue problem (1) can be replaced with an
equivalent nonlinear equation, and we obtain a linear equation 
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derived from Newton’s method for the nonlinear equation [6]. 
Here w  is a given vector non-orthogonal to the null space N
of BA λ−  and 1|||| 2 =w . The algorism of this iterative
method can be also applied to solving (2) because (2) is the
same form as (3). Consequently, both eigenvalue problem and 
singular equation can be stably solved by means of this
algorism because the global matrix in (3) is always regular.

Next, in order to solve (3) by using the multi-grid method,
we consider the following equation
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where l
T
lll gL ,,, ϕβ  and lτ  are given quantities. The

vector ly  and the scalar lρ  are unknown quantities. The

scalar lρ  for all level l requires no prolongation, no restriction, 
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Fig. 1. Convergence of the eigenvalue with respect to the mesh number.
This eigenvalue corresponds to the eigenvector left side the rational surface.

and in particular, no smoothing process since this component 
is not defined on a grid. By recognizing this point, the multi-
grid method can be applied to solving (4). However, the
restriction and the prolongation for the finite element method
are required for this application because (1) and (2) are
formulated by the finite element method. In order to
determine the restriction r  and the prolongation p  for 

lll gyL = , we approximate the basis function at level l-1,

)()1( xe l
j

−  by the basis function at level l, )()( xe l
j  such that 
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where )(l
jx  is grid point at level l. The restriction r  and the

prolongation p  can be defined by using (5), and we also

obtain the characteristic relation Tpr = . Finally, if the matrix 

Ll  at level l is symmetric, the symmetry of the matrix

)(1 pLrL ll =−  at level l-1 is conserved by the relation Tpr = .

NUMERICAL RESULTS 

We apply the numerical method to an ideal m =1 internal 
kink mode for a cylindrical plasma column. Let us use a
cylindrical coordinate (r, θ, z). The system is assumed to be
periodic in z direction, with length 2πR0, where R0 is the
major radius. The Newcomb equation for m=1 mode is
described by
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,1
1

1
)(

2

22

3







−

+
=

qx

x
xf

ε
                            (7)

.1
1

1
2

1
1

1
1

1

1
1

2
)(

2222

3
2

222

2















+

+
−





−





−

+
+








+
=

qxqqx

x
F

dx

dp

x

x
xg

εε

εε
   (8)

Here, ε=a/R0 is the inverse aspect ratio, x=r/a, the normalized 
plasma radius, and q(x0)=1, where a is the plasma radius, q
the safety factor, x0 the position of the rational surface. Also,
the toroidal magnetic field F is estimated by the pressure
profile p and the safety factor q. For formulating (6) as (1),
we employ the finite regular element method with mesh
accumulation around the rational surface x0 and impose the
natural boundary condition at the rational surface x0. We

consider set w , the initial eigenvalue )0(λ  and eigenvector

)0(ξ  for Newton’s method. The eigenvalue and the
eigenvector in the appropriate coarse grid can be determined
by the inverse iteration, and thereafter we linear-interpolate
the eigenvector from the coarse grid to fine one. The linear-
interpolated eigenvector is adopted as w  and the initial

eigenvector )0(ξ , and the eigenvalue computed by the inverse 

iteration is chosen as the initial eigenvalue )0(λ . Fig. 1 shows 
the convergence of the eigenvalue with respect to the mesh
number. It is indicated that the eigenvalue converges
inversely with the square of the mesh number.

-3.0

-2.5

-2.0

-1.5

-1.0
ε = 0.05

- 
5.

40
74

9x
10

-2
λ

x10-8

128200256512
1 / N2

CONCLUSIONS

     We have developed the iterative method to compute the
eigenvalue problem and the associated singular equation for
the Newcomb equation. The multi-grid method can be applied 
to this method. Application to the ideal m=1 mode have
verified that this method is effective for solving the
eigenvalue problem and the singular equation with numerical
stability and high accuracy.
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Abstract � In this paper we analyse the electromagnetic fields in the 
JET tokamak taking into account the 3D effects of its 3D metallic 
structures. The systems considered here that interact with the plasma 
are basically the vacuum vessel, the magnetic circuit, the active poloidal 
field (PF) coils. Especially the first two have important 3D effects that 
may cause significant deviations from purely axisymmetric estimates. 
The numerical results will be compared to the experimental data and 
utilized to tune approximate equivalent axisymmetric models. 

INTRODUCTION

Tokamaks are fusion machines that are conceptually 
ideally axisymmetric, i.e. symmetric in the toroidal direction. 
Practical issues of accessibility to the interior of the machine 
do not allow a perfectly axisymmetric structure. This 
deviation from the ideal case complicates the interpretation of 
plasma behaviour. 

Aim of this paper is to study such issues with reference to 
the Joint European Torus, JET, the largest presently operating 
tokamak [1]. The experience gained in this particular case can 
be of great importance also in other situations, especially in 
view of the next-generation tokamaks like ITER. 

The first structure that electromagnetically interacts with 
the plasma is the vacuum vessel, a conducting shell which is 
supposed to counteract (via the induced currents) unwanted 
plasma movements. In JET the shell is highly non-
axisymmetrical, not only due to the presence of ports and 
holes as in other tokamaks. We claim that the main deviation 
from axisymmetry of the vessel that must be taken into 
account is the presence of bellows, depicted in fig. 1.  In this 
paper we study the effects of such deviations from  

Fig.1. Bellows and rigid sectors. 

axisymmetry on the eddy currents patterns. 
The electrical continuity of the conducting structures 

(“rigid sectors”) is guaranteed by the presence of corrugated 
conductors (“bellows”), that offer a relatively high resistance. 
In a purely axisymmetric model, the presence of bellows is 
usually accounted for by simply enhancing the equivalent 
toroidal vessel resistivity. Hence, a sudden displacement of 
the plasma causes the growth of purely axisymmetric currents 
whose time constants are rather fast due to the relatively high 
toroidal axisymmetric resistivity. In fact, we can expect that 
currents on a slower time scale arise only in rigid sectors due 
to their relatively low resistivity. These saddle currents may 
have a stabilizing effect on the plasma that is completely 
neglected in purely axisymmetric model.  

A simplified model that is able to take this effect into 
account has been proposed in [2]. The vacuum vessel is 
discretized in a number of axisymmetric conductors, through 
which, in addition to the usual axysimmetric currents, some 
saddle currents flow. Obviously, these saddle currents have 
also a poloidal path. In [2] the contributions to the total 
resistances and inductances of such poloidal paths was 
roughly estimated on the basis of strongly simplifying 
assumptions, leaving some calibration coefficients for 
possible fitting against experiments. 

Coupling this simplified equivalent model of the vessel 
with the linearized CREATE_L plasma response model [3], 
such non-axisymmetric effects were shown to be responsible 
for a reduction by a factor of almost 2 in the growth rate of 
the vertical instability. Surprisingly, this estimate was in 
rather good agreement (around 5% in standard cases) with 
experimental results, without any fitting of the above 
mentioned calibration coefficient, showing that the simplified 
assumptions were fairly reasonable. 

Aim of this paper is to justify this simplified 
electromagnetic equivalent model. We must also consider that 
one of the peculiarities of JET, contrary to most present-day 
and future tokamaks including ITER, is the presence of a 
ferromagnetic core. This magnetic circuit is fully 3D, 
although usual models use crude 2D schematisations [4]. 
Consequently, its effect must be properly taken into account. 
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MATHEMATICAL MODEL AND NUMERICAL FORMULATION

In order to pursue the goals mentioned above, we use the 
formulation described in [5] and here briefly recalled. The 
mathematical model consists of the standard eddy currents 
equations in the time domain. We suppose that the materials 
have a linear electric resistivity tensor �, taking into account 
possible anisotropies, and that the magnetic characteristic can 
be represented as: 

� � � �BMMHB G��� ,0� (1)
where H is the magnetic field, B is the magnetic flux density 
and the magnetization M is nonlinearly related to B.

We solve the above stated problem using an integral 
formulation, which is well suited for the analysis of the 
complex 3D structures under exam, because the regularity 
conditions at infinity are automatically taken into account, 
and only the conducting domain Vc and the magnetic region 
Vf  (i.e., neither the air nor the external coils) must be meshed. 

 Expressing the electric field E as: 
E = ��A/�t � �� (2)

and using the Biot-Savart law to calculate the magnetic vector 
potential A (such that B = ��A) we automatically solve (1). 
We then give a weak form of Ohm’s law (J is the current 
density): 
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ccc VVV

dVdV
t

dV wwAwJ �� �w (3)

and of the magnetic characteristics: 
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�
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dVG BMP �P (4)

In order to guarantee the solenoidality of the current 
density we introduce the electric vector potential T (such that 
J=��T) with a two-component gauge condition [5] to 
guarantee its uniqueness. We give a finite element 
discretization of Vc and  Vf, using edge elements Nk to 
approximate T, so that: 

T = �k Ik Nk � J = �k Ik ��Nk (5)
while the magnetization vector is supposed to be piecewise 
constant (Pk’s are unit vector pulse functions): 

M = �k Mk Pk (6)
The gauge condition can be imposed giving a tree-cotree 

decomposition of the mesh [5], and retaining only the degrees 
of freedom associated with the edges of the cotree. In order to 
force J�n = 0 over �Vc, while correctly dealing with multiply 
connected domains, one could resort to the procedure 
reported in [6]. 

Solving (3)-(4) with the Galerkin method, we obtain: 
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where I={Ik}, M={Mk}, B={Bk} is the mean value of the 
components of the magnetic flux density in the elements, and: 
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The non-linear system of equations (7) can be solved 
using Picard iterations [5,7] or other suitable methods. 

This procedure was already successfully applied to the 
calculation of the magnetostatic field around the plasma due 
to some PF coils, evaluated at the positions where some 
magnetic field sensors are located. In Fig. 2 the discretization 
of the magnetic circuit is reported. Preliminary results show a 
good agreement with both the experimental values, and with 
the predictions of purely 2D iron models. 

This work was supported in part by MIUR and perforned 
under the European Fusion Development Agreement. 

Fig.2. Mesh (2436 elements) of one leg of the JET 3D magnetic circuit.  
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Investigation on Couple Electric Field and Flow Field in High Voltage SF6 Circuit
Breaker

Liu Xiaoming, Wang Erzhi, Cao Yundong
Shenyang University of Technology

58# , Xinghua South Street, Tiexi District

Shenyang 110023, China
liuxiaoming527@hotmail.com

Abstract- In this paper, couple electric field and gas flow field for 
interrupting high current in high voltage (HV) SF6 circuit breaker (CB)
has been investigated and analyzed. Moreover, for simulating the
insulating performance and interrupting characteristics of SF6 CB, arc
model in different interrupting cases have been established. Interrupting
performance and dielectric recovery characteristic of HV SF6 CB have
been obtained and discussed. 

INTRODUCTION

SF6 is widely used as insulation and arc-quenching
medium in electric apparatus because of its excellent
insulating performance in uniform electric field. And
extended in HV, extra HV and ultra HV CBs. The kernel
problem to be investigated is dielectric recovery characteristic
and interrupting performance, which mainly depend on the
combined effects of electric field and gas flow state in arc
quenching chamber during opening process and the arc 
energy dynamic simulation. Because the breaking process in a 
CB involves different phases, and considerable knowledge
has been covered in understanding of the physical processes,
which bring great difficulties for investigating the opening
property. However, flow field computation within SF6 CB is 
extremely difficult due to the complex flow path with
supersonic flow, active, viscous, compressible, variable
boundary, and some intricate physical phenomena, such as 
shock wave and vortices during interrupting. Recently,
inherent weakness has been reported lies in the
simplifications of computing structure and arc modeling. The
aim of this paper is to present a novel approach for analyzing
the couple electric field and flow field of SF6 CB. Moreover,
to solve the numerical problem with complex flow path and
space-time processing synchronously, couple field
mathematical model of electric field and flow field has been
established in this paper. Fairly good representations of
interrupting evolutionary processes within the arc-quenching
chamber and arc dynamic characteristics have been achieved
using the proposed model. And interrupting performance with
higher precision has been obtained.

MATHEMATICAL MODELING OF COUPLE FIELD

According to the gas discharge theory, breakdown 
voltage or dielectric recovery characteristic of CB is
determined by

U        (1)tfTTPNEUNEb /// 00
*

where , , represents electric field intensity,

recovery voltage, gas temperature, gas pressure, respectively.

And critical value  is 3 . It can

be seen from (1) that the dielectric recovery characteristic is
depended on combination of electric field and flow field, and
varied with time during interrupting.
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The Governing Equation

The following set of governing equations for an couple
of electric field and flow field computation can be derived:

Conservation equation of mass

t
               (2)

Conservation equation of axial momentum

yyx

pu

t

u xy)( 2

 (3) 

Conservation equation of redial momentum
v

x

uv

t

v 2(   (4) 

    Conservation equation of energy

 (5)

2

22 vu
e                 (6)

Equation of gas state
                          (7)p

where . is the correcting parameter, is

gas constant of SF6.
6SFRR 6SFR

2-D Turbulent Flow Equationk

To reflect the influence of turbulence in the gas flow
process, 2-D turbulent equation is introduced in this
paper as a part of mathematical model, that is 

k

SS
GFFU

V
VVI

yxxt
       (8)

in which, the above mentioned quantities have their 
traditional meanings, have been given in the full paper.
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Electric Field Calculation Equation

1- plenum chamber 2-shielding 3-movable main contact
4-movable arc contact 5-nozzle 6-stationary arc contact
7- stationary main contact 

Fig.1. Calculation model of CB

Electric field computation satisfies Laplace’s equation
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. Arc energy simulation after current zero
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Arc energy simulation during current zero
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whereG is the conductivity value of the element, is

the total conductivity value of the
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represents the gas conductivity, which is the 

function of and the distribution of based on

Frost’s contributions [1], has been given in the full paper.
is the source voltage after current zero. , , and

is the area of the element, arc length, corresponding

electric field and the net radiation loss, respectively.
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For truly reflecting the state and variation of couple of
fields, the TVD Scheme is improved in this paper and
combined with the Finite Volume Method to construct a new
method for calculating the flow field [2], electric fields with
different interrupting stoke have been computed using
self-adaptive meshing Finite Element Method. Calculation
conditions are as follows: Operating pressure of mechanical
actuator , gas pressure in arc quenching
chamber , static state temperature T ,

gas constant , and thermal insulation

coefficient , opening stroke for calculated model is
260mm. As the couple of fields vary continuously during the
opening process, the dielectric recovery characteristic is 
depended on dynamic distribution of couple of fields
according to the convergence and stability requirement.

MPaPa 32
MPap 6.00

9.56R

09.1k

K293

)/( kkgJ

NUMERICAL RESULTS

The calculation model is given in Fig.1. And an arc
burning model is illustrated in Fig.2. After solving couple of 
fields, insulating performance and dielectric recovery
characteristic are obtained, as shown in Fig.3 and Fig.4.

Fig.2. The sketch of equivalent arc model

Fig.3. The temperature distribution with 136mm opening stroke

Fig.4. The dielectric recovery characteristics with 13.5ms arcing time

CONCLUSIONS

For investigating the dielectric recovery characteristic, a
combined mathematical model, which compactly reflects the
regularity of electric field, flow field and dynamic variation
of arc burning, has been established. A new method and
software with higher precision and resolving power for
calculating the couple of fields in SF6 CB has been
developed.
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3-D MHD Calculation that has considered the Alternating electromagnetic force

Shouji Satoh
Ohita Setubi Sekkei Corp., Nisinosu-1, Ohita, 870-0902 Japan.

Sho-sato@daisetsu.co.jp
Keisuke Fujisaki 

Environment & Process Technology Center, Nippon Steel Corp., 20-1 Shintomi, Futtsu, 293-8511 Japan.
fujisaki@re.nsc.co.jp
Tatsuya Furukawa 

ACE Lab., Saga University, 1 Honjo-machi,Saga-city, Saga 840-8502, Japan.
tach@ace.ec.saga-u.ac.jp

Abstract－In the continuous casting process, as for the movement
of free surface at slab-mold, we know that it has an influence on the
quality of slab. Then, the free surface at the slab-mold using
electromagnetic stirring usually vibrates, and it is making the slab’s
quality degrade. The conventional magneto hydrodynamic calculation
couldn’t express the vibration of free surface. In this paper, we
researched the new magneto hydrodynamic calculation that has
considered the full electromagnetic force including the alternating
part, and confirmed that it expresses the vibration of free surface.

INTRODUCTION

The slab-mold in continuous casting process produces
“slab” that becomes an origin of the steel sheet by doing
cooling molten steel and solidifying. The quality of slab is 
almost decided in the flow and solidification process in the
slab-mold. Therefore, the flow at free surface and the
movement of free surface are very important. In recent
years, the electromagnetic stirring (EMS) by which the
flow of molten steel and solidification process can be
controlled was widely introduced because of the slab’s
quality improvement [1,2]. However, when doing the 
wrong EMS operation, it causes the degradation of slab’s
quality, because the free surface that is very sensitive to the 
quality vibrates.

On the other hand, the 3-D magneto hydrodynamic
(MHD) calculation was generally used to evaluate the EMS 
operation [3,4,5]. The electromagnetic force that was
gotten by EMS is combination of constant direct force and
cyclic alternating force. Then, the variation of the
alternating electromagnetic force would be considered as
the disturbance of free surface vibration. However, the 
conventional MHD calculation uses an only direct part of
electromagnetic force, because the mass inertia is enough 
larger than alternating force variation. Therefore, the
conventional MHD calculation couldn’t express the
vibration of free surface.

ELECTROMAGNETIC FORCE

The electromagnetic field is derived from the Maxwell

equations by the A- method as follows [6].

0

1
J

t

A
A  (1)

By using the j method and finite element method in the
discrete three-dimensional field, magnetic flux density B ,
eddy current density eJ and electromagnetic force F  is 
defined as follows.
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Here, f2 ,(  is Frequency [Hz],f A  is vector
potential [Wb/m], is scalar potential [V/m], 0J  is 
current density [A/m2], is electromagnetic conductivity
[S/m],  is permeability [H/m].

Magnetic flux density and eddy current density in
Equation (2) are shown in the j  field. They are derived in
the real field as follows.

tBtBB

tJtJJ

ir

ire

sincos

sincos
 (3)

Electromagnetic force is derived in the real field as 
shown in Equation (4), too. The electromagnetic force is
composed of constant direct force DCF  and cyclic
alternating force ACF . The alternating force ACF  has
cycle of the twice frequency.

However, the coalesced problem in electromagnetic field
and fluid dynamic field generally ignores the alternating
electromagnetic force, because the mass inertia of fluid
dynamic field is enough larger than variation of the
alternating electromagnetic force. 
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MHD CALCULATION RESULT

Casting directional electromagnetic force that was
gotten by EMS at the slab-mold is shown in Fig. 1. The
“DC-part Only” line is direct electromagnetic force only,
“DC-part + AC part” line is the full electromagnetic force
which is combination of the direct part and the alternating
part.
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Fig. 1. Electromagnetic force

The result of conventional MHD calculation and new
MHD calculation that has considered the full 
electromagnetic force are shown in Fig. 2. The result of
new MHD calculation has vibration of free surface that 

couldn’t express by conventional calculation. The slightly
moving of free surface by conventional calculation is
because of ripple. The vibration frequency of free surface
by new calculation is just twice as large as supplied
frequency, as indicated in Equation (4). This vibration of
free surface agrees with the knowledge that we have, in 
case of the producing operation at the slab-mold using
EMS.
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Fig. 2. Movement of free surface

CONCLUSION

With this new MHD calculation, we could express the
vibration of free surface, which couldn’t be produced in the 
conventional calculation. Then, we confirmed that the
alternating part of electromagnetic force makes serious
influence on the vibration of the free surface. Therefore, the
consideration of the full electromagnetic force inclusive of
the alternating part is very important, in MHD calculation
to evaluate the movement of free surface which has a
serious influence on the steel quality.
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 Abstract – Unlike the case with electromagnetic fields, the
development of a model for a turbulent flow system has considerable
flexibility in terms of choosing model parameters and system equations.
This paper examines that effect of several model choices on the
turbulent flow that is predicted for an industrial scale electromagnetic
stirring system.  It is shown that the choice of model parameters can
have a profound influence on the predicted flow.

ELECTROMAGNETIC STIRRING SYSTEMS

Rotary in-mold electromagnetic stirring systems (EMS) 
are widely used when continuously casting high quality steel.
These systems are essentially very crude induction motors
where the rotating field in produced by quite simple 2-phase
or 3-phase coil arrangements.  The rotor, consisting of the
casting mold together with the liquid steel, may be either
square or rectangular in shape.  In order for the
electromagnetic fields to penetrate the copper mold, EMS
systems typically operate at frequencies in the 1 to 6 Hz
range.  Typical 2-phase and 3-phase M-EMS systems are
shown in Fig. 1.

Fig.1. Typical 2-phase (left) and 3-phase (right) EMS systems
with rectangular molds.

The electromagnetic forces that act on the molten steel
produce complex 3D turbulent flow. Although the flow has a
predominant azimuthal component, there is also significant
flow in the axial direction. When designing EMS systems, it
is important that the specification on minimum angular
velocity be met while maintaining a quiescent free surface
(i.e. meniscus).  The prediction of flow in systems such as
this presents two challenges: (1) There is a strong coupling
between the electromagnetic and the flow systems through

the v x B field, and (2) Turbulent flow is not characterized by 
a fully deterministic set of PDEs.  This paper addresses
several issues related to the selection of an appropriate
turbulent flow model for an EMS system.  It is shown that the
choice of model has a profound effect on the magnitude and
distribution of the predicted flow.

TURBULENT FLOW MODEL

Conventional laminar flow is described by the well-known
physically derived Navier-Stokes equations (conservation of
momentum and mass). When the flow is turbulent, however,
the flow model becomes somewhat more empirical.  In the
simplest approach to turbulence modeling, an effective
(turbulent) viscosity can be defined.  At a more sophisticated
level, diffusion transport equations can be defined to
represent the kinetic energy k and the dissipation rate  of the
turbulence (i.e. the k-  model).  More recently, the Reynolds
stress terms in the flow equations have been represented in
terms of k,  and a transport equation (i.e. the Reynolds Stress
Transport or RST model).

 In addition to the choice of model to represent turbulence 
and its impact on momentum transfer within the flow system,
a second issue is numerical in origin. A flow system is
governed by both diffusion and convection.  As with systems
involving velocity dependent convection terms, instabilities
can arise which have to be treated through the introduction of 
an up-winding scheme.  The predicted turbulent flow for an
EMS system will be strongly dependent on the choice of up-
winding.  Finally, the predicted flow, particularly in the
important meniscus region (which is far from the stirred
zone) will depend on all of these factors and on the density of
grid that is used.

 The impact of each of these factors (choice of model for 
turbulence; up-winding; grid density) will be examined in this
paper. When each is treated properly, and v x B effects are
accounted for, it is possible to obtain excellent estimates of 
the velocity distribution.  This is illustrated in Fig. 2, which
shows the predicted axial distribution of angular velocity
compared to data measured using an industrial EMS system
acting on a mercury column of 110 x 110 mm square cross-
section.  The supply frequency was 5.25 Hz and a v x B
correction was applied to the electromagnetic forces that were
predicted by 3D FE software, assuming that the mercury
region was stationary. Fig. 2 shows the quality of the results
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that a carefully developed model can yield.  The final model
used approximately 50,000 cells, a RST model of turbulence
and higher order up-winding.
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Fig. 2.  Comparison of measured flow data and values
predicted by a fully converged and corrected turbulent model.

INFLUENCE OF TURBULECE MODEL PARAMETERS

The impact of the turbulence model (k-  or RST) and the
up-winding scheme is examined in this section. In all cases, 
the full v x B correction was applied.
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Fig. 3. Axial distribution of angular velocity as a 
function of the up-winding scheme.

Fig. 3 compares the axial distribution of angular velocity
when first order and higher order up-winding schemes are
used with a RST model of turbulence.  The model in this case 
used a RST treatment of turbulence.  The distribution using
the higher order scheme is similar to the one shown in Fig. 2,
other than small differences that are due to the use of a 
slightly different grid. Unless the higher order scheme is
used, the predicted angular velocity is under-estimated by
40% at the system mid-plane, and by a factor of more than 3 

at the meniscus.  The problems at the meniscus are further
illustrated in Fig. 4 where the radial distributions are 
compared.  These results, together with Fig. 2, clearly show
that predicted flow can be substantially in error at the
meniscus unless a higher order up-winding is employed.
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Fig. 4.  Radial distribution of angular velocity at the
meniscus as function of up-winding.

The impact of the turbulence model itself (k-  vs. RST) is
illustrated in Fig. 5. In this instance, both simulations used
higher order up-winding. Clearly, when a k-  model of
turbulence is used with all other parameters being equal, the
maximum angular velocity predicted at the meniscus is
under-estimated by a factor of 2.
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Fig. 5.  Radial distribution of angular velocity at the
meniscus as function of turbulence model.

CONCLUSIONS

It has been shown that in order to accurately predict the
turbulent flow in a continuous casting EMS system, it is
necessary to use a Reynolds Stress Transport model of 
turbulence, higher order up-winding, adequate grid density
near the meniscus, and a v x B correction.
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Numerical Solution of the Non Linear Electrodynamics in MHD Regimes with 
Magnetic Reynolds Number near One 
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Abstract � In MHD regimes of plasmas with magnetic Reynolds 
number comparable to one, electrodynamics exhibits a non linear 
characteristic. In the present paper, the electrodynamics has been 
discretzed utilizing a finite element method. The problem unknown is the 
electric scalar potential. Non linearity are caused by the dependance of 
the electric transport parameters and of the source terms on the 
magnetic flux density. Different approach are evaluated to deal with the 
non linearity. The model has been coupled with a solver of the Navier-
Stokes equations The MHD interaction in the boundary layer of an 
hypersonic flight has been analyzed 

INTRODUCTION

In a wide range of MHD applications of technological 
interest, the magnetic Reynolds number Rem can be assumed 
to be much lower than one.  Under this circumstance, due to a 
low fluid conductivity or a low flow velocity, the MHD 
interaction does not produce sufficient electric current density 
to generate a significant magnetic flux density. As an 
example, when modeling the electrodynamics in an MHD  
power generator, the assumption Rem << 1 allows to neglect 
the induced by the plasma current density when compared to 
the externally imposed magnetic flux density. This leads to a 
significant simplification of the electrodynamics.  

However, instances exist where the assumption of a 
magnetic Reynolds number much lower than one does not 
hold. In this case, the current density in the fluid depends, on 
some extent, on the magnetic flux generated by the current 
density itself. An additional complication arises when dealing 
with plasmas, where the Hall component of the current 
density is often not negligible. The Hall current represents the 
effect of the electrons and ions drift, and depends on the 
magnetic flux density. 

In this paper, a two dimensional model for the analysis of 
the non linear electrodynamics of the MHD interaction in a 
plasma with magnetic Reynolds number comparable to one.  

PHYSICAL MODEL

The governing equations for the electrodynamics can be 
obtained from the Maxwell equations and the generalized 
Ohm’s law. The total magnetic flux density BT can be 
decomposed into the flux density Bp induced by the plasma 
current and the externally imposed flux density Be. Given the 
linearity of the relation linking the magnetic field to its 
sources, it follows:  
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where Jp and Je are the current density in the plasma and in 
the conductors generating the imposed magnetic flux density. 

Neglecting the ion slip phenomenon, the  generalized 
Ohm’s law can be written as: 
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where, naming �e the electronic mobility, the electrons Hall 
parameter�e is: 

Tee B�� � , (3)

Equation (3) can be rewritten in a more convenient way as: 
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where the conductivity tensor �( BT) is: 
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Neglecting the time derivatives of  the magnetic flux density 
and of the electric charge density, the physical model is 
completed, by the following equations: 

�������� EE 0 , (5)

0��� pJ , (6)

NUMERICAL MODEL

Following a finite element approach, and assuming the x-y 
plane as the plane of symmetry, (4), (5) and (6) yield the 
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following matrix: 

K � + pz � pF + pJ = 0 (7)

where � is the nodal potential vector and the matrix K is the 
conductivity matrix, defined as follows: 

�
���

T NNK dSxy ,
(8)

with �xy obtained by deleting the z row and the z column in 
the matrix representing the conductivity tensor. It should be 
noted that, due to the presence of the Hall parameter, the 
conductivity matrix depends on the magnetic flux density 
and, as a consequence, on the electric scalar potential, which 
is the problem unknown. This feature yields a non linear 
characteristic of the problem. The vector pz is the contribution 
of the current on the x-y plane caused by the Ez component of 
the electric field, which is supposed to be known; pJ is the 
contribution of the current densities on the calculation domain 
boundary and the vector pF represents the effect of the u�BT
term. This term, as the conductivity matrix K, depends on the 
magnetic flux density Bp.

In order to find out the magnetic flux density Bp, the 
magnetostatic problem defined by (1.a) and: 

0��� pB ,
(9)

has to be solved. This can be done analytically, by means of 
the Biot-Savart law, or numerically solving the vector 
potential equation: 
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by means of a finite element technique. The former approach 
is especially attractive because of the possibility to store the 
matrix representing the linear relationship between the nodal 
value of current density and magnetic flux density. However, 
the numerical solution of (10) is often much faster. Moreover, 
the storing and the operation management of a full matrix is 
not a viable option for meshes containing more than some 
thousands of nodes. 

Two approach has been implemented for the solution of 
the non linear problem shown in (7). The first proposed 
methodology is basically a straight iterative scheme: at each 
iterative step, the solution of (7) allows to evaluate the current 
densities in the calculation domain. The values of the 
magnetic flux density calculated from (10), are then utilized 
for solving (7) at the next iterative step. 

The second approach utilize an inexact Newton method [1] 
to solve (7). The method utilizes  the inexact Newton 
condition: 

� � � � � �kkkkk d FFF ��� ' , (11)

where F’ is the Jacobian of the function F, constituted by the 

left hand terms of (7), d k is the solution increment at the k
step and �k � [0.1) is a forcing term enhancing the efficiency 
of the convergence. The linear system at each iteration is 
solved by means of a GMRES algorithm.  

The proposed electrodynamic model has been coupled 
with a fluid-dynamic code [2]. The fluid-dynamic equation 
are given by the continuity equation for mass, momentum and 
energy, and by the state equations of plasma.  

APPLICATIONS AND CONCLUSION

The proposed methodology has been applied for the 
analysis of the magneto-fluid dynamics in the boundary layer 
of an hypersonic vehicle. In Fig. 1, a portion of the 
calculation domain is shown, as well as the position of the 
conductors generating the externally imposed magnetic flux 
density. The calculation domain lays on the x-y plane, and the 
z component of flow velocities is neglected.  

The convergence of the direct iterative scheme proved to 
be robust enough for magnetic Reynolds numbers not 
exceeding 0.5. The application of the inexact Newton solver 
presents some critical points, namely  the evaluation of the 
Jacobian matrix and the setting up of an efficient 
preconditioning technique in order to optimize the 
convergence of each GMRES run. 

Fig. 1. Calculation mesh and conductors position. 
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Abstract ― In order to examine estimation methods of iron losses of 
rotating machines, a verification model of surface permanent magnet (SPM) 
motor is manufactured and measured by the investigation committee of IEE of 
Japan. The effect of stress due to the insertion to aluminum case on magnetic 
characteristics can also be investigated by using the model. In this paper, features 
of the benchmark model is discussed, and some results of calculation and 
measurement are shown.  
 

Ⅰ. INTRODUCTION

It has become more important for design of motors to estimate 
precisely iron losses under rotating flux. But, the accuracy of the 
conventional estimation methods have not been sufficient for the 
practical design of motors. In order to investigate the accuracy of 
various estimation methods of iron losses, a benchmark model of 
SPM motor is proposed by the “Investigation Committee on 
High-ly Advanced Method for Analyzing 3-D Electromagnetic 
Fields in Rotating Machines” of IEE of Japan. 

In this paper, features of the benchmark model is shown, and 
some problems, such as to examine the effect of stress due to casing 
the motor core are discussed. Various estimation methods, such as 
calculating the iron loss as a summation of iron losses under 
alternating fluxes in x-and y-direction[1], interpolating the measured 
iron losses under rotating flux, are examined using the model. 

Ⅱ. EXAMINATION OF BENCHMARK MODEL

Fig.1 shows a 4-pole SPM motor model. This motor consists 
of rotor core, permanent magnet, stator core and aluminum case. 
The stator and rotor cores are made of non-oriented silicon steel 
(grade: 50A1300). The core length is 40 mm. The permanent 
magnet is Nd-Fe-B magnet, and the magnetization is 1.26 T 
(parallel orientation). The motor is rotated without excitation to 
investigate the iron loss of stator core due to the flux produced by 
the permanent magnet of rotor. The rotating speed is 1500rpm. 

The iron loss of stator core is examined by the following 
process: 
(a) The B-H curve and iron loss of a stacked stator core and glued 

stator core are measured, and those are compared with the 
result measured by the SST (single sheet tester). 

(b) The torque of the motor having glued stator core is measured 
by a torque meter when the permanent magnet rotor is driven 
by another motor as shown in Fig.2. 

(c) The iron loss of the stator is obtained by subtracting the torque 
(corresponding to the mechanical loss) measured by driving 
the rotor having non-magnetized permanent magnet from the 
torque measured in (b). 

(d) The same measurement is also carried out for the stator core 
with aluminum case having some stress due to casing. 

Ⅲ. RESULTS AND DISCUSSION

A. Iron Loss by Sinusoidal Alternating Excitation of Stator Core 
First, the stator core is exited by sinusoidal alternating voltage 

with the toroidal winding as shown in Fig.3(a). The flux flows in 
the circumferential direction in the stator core. The purpose of this 
preliminary study is to clarify the increase of the iron loss after 
manufacturing the stator core from the silicon steel. 

In this case, the iron loss wi per weight can be expressed 
approximately as follows:
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Fig. 1. SPM motor model. 
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where the Ke, Kh are the eddy current and hysteresis loss 
coefficients obtained from the iron loss measurement of the silicon 
steel, f is the frequency, Bmax is the maximum flux density during 
the period of AC excitation. 

Fig.3(b) shows the experimental and the calculated results, 
which agree well. One reason of the slight underestimation of the 
calculated results can be considered as the effect of the strain caused 
by the manufacturing of the stator. 

B. Iron Loss at No Load Condition of Motor 
Next, the iron loss at no load condition of the motor is 

measured and calculated. In this case, the effects of the harmonics 
and the iron loss due to rotating magnetic field caused by the 
rotation of the rotor are not negligible. Thus, the following four 
methods are applied: 
(a) Harmonic iron loss calculation using (1) by the Fourier 
transformation of the waveform of flux density at each finite 
element. The total iron loss is calculated by the sum of the harmonic 
losses as follows: 
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where D is the density of the core, M is the number of the 
harmonics, Brn and Bθn  are the n-th harmonics of the radial and 
peripheral components of the flux density. 
(b) Total iron loss calculation using the waveform of the flux 
density directly [2]. The eddy current loss Wie and the hysteresis 
loss Wih are calculated by 
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where N is the number of time step per one time period, ∆t is the 
time interval, ∆Vi is the volume of the i-th finite element, Bmrij and 
Bmθijare the amplitudes of each hysteresis loop. 
(c) Total iron loss calculation considering the effect of the rotating 
magnetic field as follows: 
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where W1, Wn are the fundamental and the harmonic iron losses, α
is the axis ratio of the rotating magnetic field. In this case, the 
fundamental iron loss is expressed as the function of both Bmax and 
α.
(d) Direct eddy current loss calculation considering skin effect of 
the laminated silicon steel using the 3-D finite element method. 

Fig.4(a) shows the iron loss distribution obtained by the 

method (b). The iron loss concentrates at the stator teeth, where the 
time variation of the flux density includes low order time harmonics 
caused by the magnetic saturation of the core as shown in Fig.4(b). 

Fig.5 shows the calculated iron losses of SPM motor model 
shown in Fig.1. The accuracy of the iron loss estimation methods 
can be examined by comparing with measurement. The detailed 
results of measured and calculated iron losses will be shown and 
discussed in the extended paper.
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Abstract—A new approximate method, which uses 2-D finite element 
technique to calculate 3-D electromagnetic field of electrical machine with 
slot-skewed, is proposed. Based on this method, the numerical technique of 
directly coupling the equations of transient eddy-current field and circuits is 
studied, and the example equations of application to the 12-phase rectification 
synchronous generator with skewed slots are established. Then, the dynamic 
voltage of a salient synchronous generator at no-load is calculated, and the 
regular pattern in which the damper windings affect the voltage waveform is 
analyzed. The results show that the damper windings can reduce the stator 
tooth harmonic components of voltage at no-load, and can strengthen the 
rotor tooth harmonic voltage components which related to the damper 
winding pitch. These practical calculations demonstrate that this method is 
effective. 

Index Terms—Electromagnetic field, Slots-skewed, Synchronous 
generator, Finite element method,

INTRODUCTION. 

It is known that 3-D FEM can achieve very close result in 
calculating the electromagnetic field in electrical machine. But 
it is complicated and time consuming. Particularly, it is not 
suitable to use directly coupling equations of transient 
eddy-current field and circuits to get the dynamic characters of 
an electrical machine. The 2-D finite element method, on the 
other hand, cannot consider the skewed slots or oblique pole 
effect of electrical machine, and we usually deal with it by 
multiplying with skewed coefficient, therefore the result is not 
exact. In this paper, a new approximate method which uses 
2-D FEM to calculate 3-D electromagnetic field of electrical 
machine with slots-skewed is proposed. An example of a 
12-phase synchronous generator-rectification system is given 
to show how to build and solve the direct coupling the 
equations of transient eddy-current field and circuits. The 
example demonstrates the feasibility and the effectiveness of 
this method. 

 THE PRINCIPLE FOR USING 2-D FEM TO CALCULATE 3-D EM 
FIELD OF ELECTRICAL MACHINE WITH SLOTS-SKEWED 

Because the slot is skewed in electrical machine, the same 
stator slot has different mechanical angles along the axis 
direction of stator, as shown in Fig.1a. The idea behind is to 
get certain number of sections at different axis position of 

electrical machine, then calculate each magnetic vector 
potential, and finally average the data got from each areas. 
The more areas you choose, the more closer the result will be.  

If we choose the first section at the one end of the stator iron 
core and the last section at the other end, the middle of the 
iron core can be sampled with certain number of 
identical-distance areas (as shown in Fig.1b). The magnetic 
vector potential on each section are different as the relative 
positions between stator and the rotor change. On each section, 
the numbers of node are same, the distributions of current 
source are also same. 

y

x0 Section 1
Section 2
Section 3

Section n-1
Section n

          a                                   b 

Fig.1 Schematic Diagram of slot-skewed stator   

Suppose the number of sections got along the axis is l, and 
their magnetic vector potential are A1, A2,…,Al. Then the 
governing equation of magnetic vector potential and the 
boundary value problem are as follows:  
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The boundary conditions are given as fig.2 
After the magnetic vector potential on each section is 

obtained, we can calculate relevant parameters by subsection 
method. The equation for phase voltage of electrical machine 
with slots-skewed is as follows: 

� � � � � � � � � �� �lAAABeff ���
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dtl
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COUPLING EQUATION OF 2-D NON-LINEAR TRANSIENT 
EDDY-CURRENT FIELD AND CIRCUITS  

For the magnetic field in the skewed generator with the 
known current source, we can calculate the magnetic vector 
potential on different sections. But for some systems, the 
winding current is unknown, and it depends on the magnetic 
field distribution in the electrical machine and the parameters 
in outer circuit. Therefore, it is necessary to establish the 
coupling equation for 2-D transient eddy-current field and 
outer circuit for all computing sections. The combinative 
discretization equation is as follows  
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NUMERICAL ANALYSIS ON ELECTRIOMAGNETIC FIELD OF THE 

ELECTRICAL MACHINE WITH SLOTS-SKEWED.

It is well known that the classic harmonic permeance can 
analyze why skewed slot or skewed polar can reduce the stator 
tooth harmonic voltage. But this method did not consider the 
effect of damper winding, and therefore cannot quantitatively 
calculate the stator tooth harmonic voltage. In this paper, we 
calculate and analyze voltage waveform of a skewed stator 
12-phase synchronous rectification generator at no-load 
situation, and analyze the effects of different pitch 
slots-skewed on reducing the stator tooth harmonic voltage. 

Table � shows the basic data of the electrical machine. Fig. 
3~4 are the calculation result. Ks is the coefficient of the 

Table �. Basic data of generator 

B a s i c  d a t a  Damper data M e s h  d a t a  

PN=18kW, P=2, Z=48  

�=196.35mm ,m=12

� p=0.74  gmin=

nc=7

t2 /t1=1.187

elements�8780

codes�4700

gmax=1mm

skewed slot, which is defined as the ratio between the pitch of 
slots-skewed and the stator slot pitch; kv(%) is defined as the 
ratio between the amplitude of v harmonic waves and the base 
amplitude.  

The result shows that the skewed stator can effectively 
reduces the stator tooth harmonic voltage, especially when the 
slot-skewed pitch is equal to the stator slot pitch 
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Fig.3 Phase voltage waveform (ks=0.5) Fig.4 Phase voltage waveform (ks=1)

Fig. 5 indicates that there is no apparent effect on phase 
harmonic component after introducing skewed slot. The curve 
in Fig. 6 shows that the main teeth harmonic voltage changes 
as the pitch of slots-skewed changes. From the curve, we can 
see that when ks=0.5, 2-order (47th, 49th) tooth harmonic 
component can be reduced greatly, while the effect on 1-order 
(23rd, 25th) is limited. But when ks=1, both 1-order and 
2-order tooth harmonic component can be reduced greatly. 
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CONCLUSION 

This paper introduces the principle to use 2-D finite 
element to approximately calculate the 3-D electromagnetic 
field in the skewed electrical machine with an example of a 
12-phase (4Y with displace 15 °  angles) rectification 
synchronous generator with slots-skewed. A non-linear direct 
coupling equation of the 2-D transient eddy-current field and 
circuits is established. We simulate and calculate the 
electromagnetic field and voltage waveform with no-load. The 
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Abstract – In the design of electrical machines
and transformers, the modelling of the laminated
core material is of great importance. Moreover espe-
cially in the conceptual phase, a finite element anal-
ysis with all details of the slotted geometries might
be onerous. Both scopes of duties can be treated
by an anisotropic modelling with regard to perme-
ability and conductivity of the used materials. The
application of this anisotropic material modelling is
shown with some characteristic examples in the field
of electrical machines and transformers.

Index Terms – Electrical machine design, Mate-
rial modelling, Finite element analysis

I. Anisotropic Core Model

The material properties of the laminated iron core
are built with anisotropic permeabilities and conduc-
tivities related to a cartesian coordinate system as
shown Fig. 1.

The laminated iron core can be represented by an
effective permeability obtained from the ratio of airgap
thickness to lamination thickness as expressed by the
well known space factor kF [1]. Based upon the shown
cartesian coordinate system, the anisotropic perme-
ability is given as

[µ ] =




µxx 0 0
0 µyy 0
0 0 µzz


 . (1)

The different magnetization directions of legs and
yokes are considered with appropriate functions µxx

and µzz. In dependence of the local saturation, the
function

µyy = µ0
µ

µ(1 − kF ) + µ0kF
(2)

take into account the lamination.

With this anisotropic modelling, modified magne-
tization characteristics as proposed in [2] can be ap-
plied additionally.

Fig. 1: Active parts of the finite element model of a three-
leg power transformer containing core, low and
high voltage windings, core clamping plate and
steel tank wall (partly shown) [3]

In case of an unsaturated iron core, the eddy cur-
rents in the lamination sheets can be modelled with
an equivalent conductivity as

[ σ ] =




σxx 0 0
0 0 0
0 0 σzz


 , (3)

where σxx ans σzz denote the iron conductivity with
respect to magnetization direction.

The representation of the laminated iron core when
considering the eddy currents in the xz-plane of the
saturated lamination sheets is more complex. This
modelling is based on [4]–[6] and will be shown in the
full paper.

II. Anisotropic Winding Model

In frequent cases, both the high voltage and the
low voltage windings of power transformers consist of
many single turns. Therefore, a replacement method
of spreading the multiturn windings with a minimum
of changes within the field and energy distribution is
necessary.
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As shown in [7], [8], this can be done using attached
0D circuit elements and 1D line elements. However,
there are noticeable differences in the field and energy
distribution in the regions of the windings due to the
reduced number of turns of each winding with these
proposed modelling methods. Due to this reason, an-
other modelling method will be used when the fields
of interest are the multiturn windings themselves.

With regard to Fig. 1, the conductivity of the coil
windings is related to three local cylindrical coordinate
systems as

[ σ ] =




σrr 0 0
0 σϕϕ 0
0 0 σzz


 . (4)

In the case of impressed current densities without no-
ticeable eddy currents inside the coil windings, the
anisotropic conductivity (4) can be written as

[σ ] =




0 0 0
0 σ 0
0 0 0


 . (5)

The anisotropic conductivity (4) can be used with
applied voltages, too. Thereby, an assumption of the
current density as a screw line with a constant ratio
c = Jz/Jϕ is valid. This yields to an anisotropic con-
ductivity of the coil winding as

[ σ ] =




0 0 0
0 σ c σ
0 c σ c2 σ


 , (6)

where the slope coefficient c can be derived directly
from the geometry of the coil winding.

III. Anisotropic Slot Model

As usual, the slotted geometry of an rotating elec-
trical machine is described in the rϕ-plane. Therefore,
the anisotropic behaviour can be represented with the
permeability as

[ µ ] =




µrr 0 0
0 µϕϕ 0
0 0 µzz


 . (7)

The replacement method as shown here eliminates
the circumferential distribution of the magnetic
anisotropy. Thus, the slotted geometry will be repre-
sented by permeabilities in dependence of the radius
only.

Introducing the slot width function s(r) and the
slot pitch function τ(r), the components are given as

µrr(r) = µ
τ(r) − s(r)

τ(r)
+ µ0

s(r)
τ(r)

, (8)

µϕϕ(r) = µ0
µ τ(r)

µ0

(
τ(r) − s(r)

)
+ µ s(r)

. (9)

Additionally, the lamination in the axial direction is
represented with an analogous form of (2) by

µzz = µ0
µ

µ(1 − kF ) + µ0kF
. (10)

As it will be shown in the full paper, the above
equations can be used for linear electrical machines
with slightly modifications.

IV. Concluding Remarks

The full paper includes applications of the above
material modelling with high-speed induction ma-
chines, transverse flux machines and power transform-
ers.
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Abstract— The current and position dependent flux linkages and

forces of radial active magnetic bearings are determined by the finite el-

ement method. The results obtained are incorporated into the dynamic

model of active magnetic bearings in order to evaluate the influence of

magnetic nonlinearities and cross coupling effects on their dynamic and

static properties. The presented results show that the magnetic nonlin-

earities and cross coupling effects can change the electro motive forces

considerably. These cross coupling effects are calculated and can be im-

plemented in the control design as additional compensations.

INTRODUCTION

Active Magnetic Bearings (AMB’s) are a system of con-
trolled electromagnets which enable contact-less suspension of
a rotor [1]. The electromagnets of the discussed AMB’s [2]
are placed on the common iron core, which means that their
behavior is magnetically nonlinear. Moreover, the individual
electromagnets are magnetically coupled.

For the control design of the AMB’s the linearized dynamic
models are commonly used, where magnetic nonlinearities and
cross coupling effects are not considered [1]. The nonlineari-
ties can be taken into account, for example by the nonlinear
force characteristics and dynamic inductances [3]. The influ-
ence of the disturbing cross coupling effects is neglected in the
majority of the dynamic AMB models, which are available in
the literature, although the efficient cross coupling compensa-
tion is important to get better closed-loop dynamic behavior of
the device.

In this paper, the impact of the magnetic nonlinearities as
well as cross coupling effects on the properties of AMB’s is
evaluated. The characteristics of flux linkages and radial forces
are determined by using the Finite Element (FE) method and
verified by measurements in the entire operating range of the
bearing. The determined characteristics are incorporated in the
dynamic AMB model. The obtained dynamic model is used to
evaluate the impact of magnetic nonlinearities and cross cou-
pling effects on the properties of AMB’s. The proposed dy-
namic model is appropriate for the nonlinear control design.

FINITE ELEMENT COMPUTATION

The geometry and the magnetic field distribution of the
studied AMB’s is shown in Fig. 1, while the AMB circuit
model is shown in Fig. 3.

The magneto-static computation was performed by 2D FE
method using (1), where A denotes the magnetic vector poten-
tial, � is the magnetic reluctivity, and J is the current density.

i���Ai���A

i���A

i���A

�
x����mm

�
y����mm

Fig. 1. The AMB geometry and magnetic field distribution.

r� ��rA� ��J (1)

The flux linkages ��, ��, �� and �� were calculated in
the entire operating range from average values of the mag-
netic vector potential in the stator coils for different control
currents ix	 and iy	, and for different rotor displacements in
the x- and in y-axis. The radial forces Fx and Fy were calcu-
lated by Maxwell’s stress tensor method.

DYNAMIC AMB MODEL

The dynamic AMB model is according to the circuit model
presented in Fig. 3 given by (2) and (3):

�
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dx
dt
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(2)	
Fx

Fy



�m

�
d�x
dt�

d�y

dt�

�
(3)

where u�, u�, u� and u� are the supply voltages, I� is the bias
current, ix	 and iy	 are the control currents in the x- and in
y-axis. R stands for the coil resistances. Fx and Fy are the ra-
dial forces in the x- and in y-axis, respectively. The character-
istics ���ix	� iy	�x�y�, ���ix	� iy	�x�y�, ���ix	� iy	�x�y�
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Fig. 3. The circuit AMB model.

and ���ix�� iy��x�y�, as well as Fx�ix�� iy��x�y� and
Fy�ix�� iy��x�y� were determined by FE computations. The
current and position dependent partial derivatives of flux link-
ages required in (2) have been determined numerically. There-
fore, the magnetic nonlinearities and cross coupling effects are
incorporated into the dynamic AMB model (2), (3) by the cur-
rent and position dependent flux linkages and forces.

In standard AMB models the terms like ���
�iy�

and ���
�y

are

constant, the terms like ���
�iy�

and ���
�y

are neglected, while the

forces are given by the linearized functions. Therefore, the
dynamic model proposed in this paper is much more consistent
in comparison with the standard AMB models.

RESULTS

A good agreement between the computed and measured
forces can be seen in Fig. 2a) and Fig. 2b). The partial deriva-
tives ���

�iy�
, ���

�y
, ���
�iy�

and ���
�y

are shown in Fig. 2c) – Fig. 2f).

The flux linkages were determined by the FE method, while the
partial derivatives were calculated numerically. The presented
results are given for the case when the control current ix� and
the rotor position in the x-axis are equal to zero.

From the computed results shown in Fig. 2c) – Fig. 2f) can
be seen that the current and position dependent partial deriva-
tives of flux linkages are different from zero. As a conse-
quence, the electro motive forces (emf’s) can vary in a range
up to 16 % when compared to those, obtained by the standard
AMB models.

CONCLUSION

The impact of magnetic nonlinearities and cross coupling
effects on the properties of radial AMB’s is studied in the pa-
per. It has been shown that the results of the FE computa-
tions can be used to improve the standard AMB models. In
this way, the magnetic nonlinearities and cross coupling ef-
fects are considered in the proposed dynamic model, which is
appropriate for the evaluation of static and dynamic behavior
of the AMB’s. The presented results show that the influence of
magnetic nonlinearities and cross coupling effects is not negli-
gible. In the case of the discussed AMB’s, the emf’s can vary
due to the magnetic nonlinearities and cross coupling effects in
the range up to 16 % in comparison with those data obtained
by the standard models. These effects have to be considered in
the nonlinear control design as cross coupling compensations.
Therefore, the closed-loop dynamics can be improved in the
best possible way.
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ABSTRACT : Exterior magnetic fields compuation of 
permanent magnet synchronous motors are of 
importance in naval applications with respect to 
electromagnetic interference and detection. For 
shipboard applications far field effects due to currents in 
the stator windings, induced magnetic field in the iron 
parts and permanent magnets in the rotating members of 
motors are of significance and their accurate evaluation is 
vital to providing remedial measures.  In this paper, the 
effects due to all the above are analyzed using a scalar  
potential method. 

INTRODUCTION: 

Brushless DC (BLDC) motors are presently 
being considered for naval applications ranging 
from pumps to propulsion. In some instances 
these would replace induction motors and in 
some cases mechanical drives. Of vital 
importance for naval applications is the 
electromagnetic signature of these motors. 
Propulsion motors under consideration are quite 
large both in rating and physical 
size. Electromagnetic fields near the motor must 
not interfere with on-board systems.  The far 
field of these motors must be below specific 
thresholds to avoid detection. The balanced case 
for the far field has been presented in [1]. For 
characterization of motors particularly with 
regard to their far field performance and to effect 
design changes to compensate for asymmetries 
during the manufacturing process, multi-pole 
decomposition is necessary. Numerical methods, 
such as finite element analysis, do not give 
sufficient resolution to accurately compute the 
small net fields produced by the cancellation of 
larger components from different poles of the 
machine, currents in the stator and induced 
magnetization in the iron parts, far from the 
source. An integral formulation [1,2] is used in 
conjunction with finite element analysis to obtain 
the potentials. These potentials are then used to 
compute magnetic charges from which the multi-
pole decomposition of the magnetic field is 
obtained. The results for both balanced and 
unbalanced cases for different number of poles 
are presented. Several applications are illustrated. 

DETERMINATION OF THE FIELD AND ITS MULTI-
POLE EXPANSION DUE TO SPHERICAL 
HARMONICS:

Scalar potentials on a sphere surrounding the 
permanent magnet machine can be obtained by a 
combination of finite elements (to determine 
saturation in iron parts) and integral equations to 
determine the potentials using numerical 
integration [4] due to permanent magnets, 
current sources and induced magnetization in the 
iron members. From these potentials, a charge 
simulation method yields magnetic charges on a 
concentric sphere in close proximity but interior 
to the first sphere.  These charges are then used 
to find the multi-pole components of the far field 
at any desired point exterior to the outer sphere.   
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APPLICATION: 

Model  of a Brushless DC Motor (BLDC)

A full model of the motor including magnets, 
stator iron, winding currents, and endcaps is 
described. Two such examples of this model are 
illustrated. One is totally for a balanced case, the 
other is with the residual flux density of magnet 
1 about 5% demagnetization (1.1T 1.05T). 

Figure 1 Full meshed model of a 6pole BLDC 
motor(with endcaps and stator coils) 

Figure 2: Cross Section of a 6 pole Permanent 
Magnet Motor

Table 1: Magnetic field for the balanced case. 

Observation pts -
m rH

�

H
�

H
1, 0, 0 8.098E-3 -5.298E-5 -1.13E-2 
10,0,0 4.176E-7 -1.686E-8 -8.115E-8 

100,0,0 3.369E-10 -1.436E-11 2.705E-11 

Table 2 Magnetic field - unbalanced case. 

Observation pts 
-m rH

�

H
�

H
1, 0, 0 -3.136E-2 -4.389E-5 8.226E-4 
10,0,0 -3.672E-5 -1.395E-8   1.067E-5 

100,0,0 -3.649E-8 -1.18E-11   1.066E-8 

Comparison of sources @1,0,0 meter
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Figure 3:  Comparison of the far field from different 
sources 

Table 3 multi-pole components at 1 meter along the x-
direction 

Pole pair rH
�

H
�

H
1 0.3359E-03 -.1409E-04 0.2831E-04 
3 0.8078E-02 -.1077E-04 -.1238E-01 Balanc

ed 
5 -.3365E-03 0.1154E-05 -.4215E-03 
1 -.3645E-01 -.1165E-04 0.1064E-01 
2 -.3601E-02 -.2208E-04 0.1295E-02 
3 0.9005E-02 -.8312E-05 -.1223E-01 
4 0.1583E-03 -.3036E-05 0.4024E-04 

unbala
nced 

5 -.4937E-03 0.9587E-06 -.4050E-03 

CONCLUSIONS:   

In this paper we have presented the analysis of 
far fields due to magnets, stator currents and 
induced magnetization in iron parts in a six-pole 
motor by two scalar potential methods. Results 
of multi-pole expansion of the far (magnetic) 
field components on a real size motor are 
illustrated.  Results obtained from an alternate 
spherical harmonic decomposition method will 
be included in the full paper. 
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Abstract – In this paper, design and construction of an axial-flux 
permanent- magnet generator with power output at 60 [Hz], 10 [kVA], 
300 [r/min] for wind energy system is presented.  The paper discuses 
characteristics of an axial-flux permanent-magnet generator for a 
gearless wind energy system which aims to be satisfied with variable 
operating conditions. Finite-element method (FEM) is applied to 
analyze generator performance at variable load. The results of FE 
analysis show this generator is feasible for use with a wind turbine. 

INTRODUCTION

Recently, permanent-magnet (PM) generators in order to 
convert wind power into electricity are very applied. 
Especially, PM axial-flux generators are attractive 
candidate for wind power generation because they have 
higher efficiency, power facts, output power per mass and 
better dynamic performance than the other electrical 
machines [1-3]. 

In this paper, wind turbine system with direct-driven 
axial-flux type PM synchronous generator, 10 [kVA], 300 
[rpm], is introduced.  Generator with axial-flux type or disk 
type is possible to avoid gearbox which is necessary for 
conventional generators. Thus it must be light to minimize 
the requirements for the tower structure and volume. 

In order to analyze the characteristics of this generator, 
finite-element (FE) analysis is applied. Dynamic 
characteristics analysis of three-dimensional FE is required 
because of construction of this generator, but it takes long 
time to calculate. Therefore, equivalent model of 2-
dimensional (2-D) is developed. 

Both steady and transient-state analysis is performed. 
Resistive and inductive loads as variable load are applied in 
order to analyze driving characteristics. The results are 
very similar to predicted performance of design. 

DESIGN AND CONSTRUCTION

The basic specification of PM generator is shown Table 
1. One unit module of this generator with axial-flux, 
double-side and disc-type can be combined 30 [kVA] as 
shown Fig. 1. Generator consists of a rotor between two 
stators and winding is connected to a stator as series so that 
induced voltages from two stators are united together.  

A rotor consists of 24-pole and one permanent magnet 
per a pole. The material of a rotor is stainless and 
construction of that was designed the leakage flux to be 
reduced  

Single-layer lap winding is used in two stators for 
economy of construction and volume. The material of core 
is S-18, and silicon whose thickness is 0.5 [mm] was used. 
In order to reduce eddy current, the core was laminated roll 
type. The number of slot is 72 and the number of conductor 
is one per one phase and one pole. 

Table 1. Basic specification of wind generator

Rated power           
Rated speed            
Rated voltage          
Number of poles             
Number of phase          
Type                 
Phase connection

10000 [VA] 
300   [rpm] 
380   [V] 
24
3
Axial-flux 
Y    

Fig. 1. The construction of a permanent-magnet axial modular generator  

FINITE-ELEMENT (FE) ANALYSIS

Equivalent 2-D model 

The equivalent 2-D model proposed was calculated as 
average value and 2 poles of 24 poles move between two 
stators so that dynamic characteristics can be analyzed as 
shown in Fig. 2. Maxwell is used for performing finite 
element analysis. In order to calculate induced EMF, 
external circuit is connected so that driving characteristics 
at no-load and resistive and resistive-inductive load was 
analyzed. 
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Fig. 2. Equivalent model for characteristics analysis 

The magnetostatic field problem of Maxwell may be 
solved on the base of the following equation (1) [2-4]. 

(1)

where, A is the magnetic vector potential, � is the 
reluctivity given by �Hc/Br�, Br is the remanent magnetic 
flux density, and Hc is the coercive magnetic flux of the 
PM. 

The results of FE analysis

The magnetic flux density waveform in air gap is shown 
at Fig. 3. The calculated RMS value was 0.446 [T], but the 
result of FE analysis was 0.51 [T]. 

Three-phase current from 2 poles of 24 poles is shown at 
Fig. 4. About 1.5 [A] induced current from six coils must 
multiply 12. When its value is changed rms value, it is 
about 15.5 [A]. 

Fig. 5 shows voltage as variable speed at various loads. 
According to increase speed, voltage is also increase as 
linear. When the speed is at 300 [rpm], rated voltage that is 
226 [Vrms] appears. 

The output power as current is increased shows at Fig. 6. 
When current is 15.53 [A], the output power reached 10 
[kVA]. 

Fig. 3. Air-gap magnetic flux density  

Fig. 4. Current from six coils at resistive load  
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Fig. 5. Voltage according to variable speed at various load 
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Fig. 6. The output power characteristics as current increases 
at R and R-L load 

CONCLUSION

In this paper, wind turbine system with direct-driven 
axial-flux type PM synchronous generator, 10 [kVA], 300 
[rpm], is presented. In order to analyze the performance of 
axial PM generator, FE analysis is used, and the 2-D 
equivalent model is developed. The steady-state and 
transient-state characteristics is respectively analyzed at no-
load and RL-load. The results of FE analysis are very 
similar at both R-load and RL-load and show this generator 
is feasible for use with a wind turbine. The added analysis 
and experimental results will be reported in extend paper in 
details. 

REFERENCES

[1] B.J. Chalmers, W. Wu, and E. Spooner, “An axial-flux permanent-
magnet generator for a gearless wind energy system”, IEEE Transac-
tions on Energy Conversion, Vol. 14, No. 2, pp. 251-257, June 1999 

[2] E. Muljadi, C.P. Butterfield, and Y.H. Wan, “Axial-flux modular 
permanent-magnet generator with a toroidal winding for wind-turbine 
applications”, IEEE Transactions on Industry Applications, Vol. 35, 
No. 2, pp. 831-836, July/Aug. 1999  

[3] V. Cingoski, M. Mikami, and H. Yamashita, “Computer simulation of 
a three-phase brush-less self-excited synchronous generator”, IEEE 
Transactions on Magnetics, Vol. 35, No. 3, pp. 1251- 1254, May 1999 

[4] J. Chen, C.V. Nayar, and L. Xu, “Design and finite-element analysis of 
an outer-rotor permanent-magnet generator for directly coupled wind 
turbines”, IEEE Transactions on Magnetics, Vol. 36, No. 5, pp. 3802-
3809, Sep. 2000  

[5] F. Caricchi, F. Crecimbini, O. Honorati, G.L. Bianco, and E. Santini, 
“Performance of coreless-winding axial-flux permanent-magnet generator 
with power output at 400 Hz, 3000 r/min”, IEEE Transac-tions on 
Industry Applications, Vol. 34, No. 6, pp. 1263-1269, Nov. 1998 

67Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



An Application of Laurent Expansion of Air Gap Magnetic Field 
to Optimizing Motor Geometry with Partially Saturated Iron Core

Masashi Kitamura, Noriaki Hino, and Fumio Tajima
Hitachi Research Laboratory, Hitachi, Ltd.
7-1-1 Omika, Hitachi, Ibaraki 319-1292 Japan 

masashi@hrl.hitachi.co.jp

Abstract – The Laurent expansion of air gap magnetic flux density has 
been applied to the optimal design, based on the combination of the finite
element analysis and direct search algorithm, for motors with partially
saturated rotor core. It was shown that this technique could remarkably
reduce the total elapsed time to obtain the optimal solution.

INTRODUCTION

While going through the process of motor design, we often
notice that it includes a variety of electromagnetic optimization
problems.  Obviously, solving these problems numerically
will help us speed up the design process. On the other hand, it
is also true that, in some cases, a considerable amount of the
computational time is required because the magnetic field
computation with the finite element analysis (FEA) must be
iterated until the optimization reaches a convergence.

In our previous paper [1], we proposed a numerical method,
being limited to torque-related problems, for the purpose of
reducing the elapsed time to obtain objective function values.
The point of our method is to find out an approximate torque
value from the air gap magnetic field calculated for a single
time step rather than by computing the torque waveform.
Hence, this reduces the elapsed time to compute the functional
value, at least, by the order of 1/10. This approach, utilizing
the Laurent expansion of the air gap magnetic flux density, is
valid as long as the linearity of the machine is preserved even
though the torque waveform has a large ripple.

This paper reports an application of the above-mentioned
method to optimizing cross-sectional geometry of interior
permanent magnet (PM) synchronous motors, in which the
magnetic saturation of the rotor core cannot be neglected. The
usefulness and limitation of our method are also discussed.

TIME-AVERAGED MOTOR TORQUE

The derivation of the time-averaged motor torque is briefly
reviewed [1]. 

From the 2-D static Maxwell’s equations, 0B  and 
jB 0  where 0 is the permeability of the vacuum and j

is the current density, the x and y components of B  satisfy
 and 0/ yy/ BxBx j0yBxB xy // .  Then,

if we introduce the magnetic flux density in complex form
written as B(z) = By+iBx as a function of the point, z = x+iy, we

can say that the B(z) in a free space (j = 0) is a regular function
of z since the above relationships are identical to the Cauchy-
Riemann relations of B(z) [2].  Consequently, the magnetic
flux density in complex form in the ring-shaped air gap of the
rotary motor can be expanded at the motor axis (z = z0) into the
Laurent series: 

n

n

n R
zzczB 0)(                          (1)

where the coefficient cn is computed from

C n

n

n z
dB

iR
Rc 1

0 )(
)(

2
.                        (2)

Here R is the reference radius, introduced conveniently to give
cn in Tesla, and C is an arbitrary closed loop in the air gap. 

Moreover, reconsidering the 2-D Maxwell stress tensor on
the basis of the above complex representation, we can show
that the torque  applied to the region inside the closed loop C
in the air gap is expressed in complex form as 

C
dzBzz 2

0
0

Re
2

1 .                  (3)

Now let us suppose that we have a P-pole synchronous
motor rotating steadily at the angular velocity  and assume
that the cn and the angular velocity n of the magnetic flux
density represented by the nth term in (1) are independent of 
time. Since the fundamental components in (1) respectively
due to the stator and the rotor revolve at the same angular
velocity, viz., = P/2 1= P/2+1)  and for other components
(n P/2 1) the relationship, n n+2, stands, we derive the
time-averaged motor torque  given by

]Im[)2( )12(120
2

PP ccR                  (4)

where cP/2 1 and c P/2+1) denote the coefficients of the P-pole
fundamental magnetic fields, whose flux lines in the case of P
= 8 are illustrated in Fig. 1. It should be noted that, as long as 
the above assumptions are satisfied, we can compute the 
using (4) from an instantaneous magnetic flux density in the air
gap regardless of the torque waveform.
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 EXAMPLE OF OPTIMIZATION

As an example, we deal with a simple torque maximization
problem of a 16-pole, 48-slot interior PM motor shown in Fig
2(a). To solve this problem, the following objective functions
are maximized by the direct search proposed by Rosenbrock [3]
combined with the FEA: 
Mean of torques computed at time steps with even intervals

10

1
211 )(

10
1),(

k
ktxxh ,                          (5)

Time-averaged torque computed from (4)

]Im[)2(),( 970
2

212 ccRxxh .                  (6)

The optimization variables are PM width (x1) and the current
phase (x2) measured from the q-axis, as shown in Fig. 2(a). 

Our first concern is to know to what extent the assumption
we made in the previous section is valid when the rotor core is 
strongly saturated.  In Fig. 3, the absolute values of cn are
depicted as a function of the time step number. We see that 
the assumption is partially satisfied; the 16-pole fundamental
components c7 and c 9 are almost constant in time, but other
higher order components vary considerably.

For both objective functions, the torque maximization
converged very nicely as shown in Fig. 4. The optimal shape
is shown in Fig. 2(b).  Table 1 summarizes the optimal
solutions obtained from (6) with c7 and c 9 computed for each
time step in Fig. 3. Though we find that a deviation in the
solutions with h2 is not negligible compared with that with h1, it 
can be said that the approximate solutions are obtained quickly.
This indicates that, optimizing the problem using (5) with one
of the above solutions as initial values, the total computational

time to find the optimal solution can be remarkably reduced.
Details of more realistic examples are reported in the full paper.
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1 2 3 4 5 6 7 8 9 10
Solutions
with h1

x1 (mm) 49.4 49.5 45.8 45.8 45.9 45.9 46 47.3 48.7 49.5 49.4

x2 (deg) 23.3 17.7 18.6 19.6 18.8 19.5 21.2 17.7 17.9 12.1 15.8

Solutions with h2

Table 1  Comparison of optimal solutions

Time step 1 2 3 4 5 6 7 8 9 10
Solutions
with h1

x1 (mm) 49.4 49.5 45.8 45.8 45.9 45.9 46 47.3 48.7 49.5 49.4

x2 (deg) 23.3 17.7 18.6 19.6 18.8 19.5 21.2 17.7 17.9 12.1 15.8

Solutions with h2

Table 1  Comparison of optimal solutions

Time step
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Abstract To achieve low cost and high precision operational 
requirements in microelectronics fabrication industry, a new micro 
linear switched-reluctance motor ( LSRM) design that being integrated 
with the microelectromechanical system (MEMS) processing scheme has 
been investigated. With the degraded property of magnetic material 
after electroplating process and the geometric constraints of MEMS 
technology all being taken into account, the motor generated 
propulsive/normal force ratios at various pole shapes and winding 
excitation levels have been analyzed by three-dimensional finite element 
analysis. Results showed that the design objectives could be successfully 
fulfilled by the proposed LSRM structure. 

I. INTRODUCTION

With its inherent properties of simple mechanical 
structure and large force, the switched-reluctance motor 
preserves its competence in the miniaturized world for 
microelectromechanical system applications. The mass 
requirements in minimally invasive surgery, micro 
positioning stage, micro fluidic devices, relays, and switches 
have drawn more and more attentions on the possible 
construction of devices employing such machine concepts. 
By using the schemes based on semiconductor compatible 
processes, a micro linear switched-reluctance motor ( LSRM) 
is thus expected to fulfill these operational objectives. 

In 1993, Guckle et al [1], [2] fabricated and tested a 
three-phase reluctance motor using the x-ray lithography and 
electroplating processing (LIGA processing) scheme. The 
motor was designed with 6 stator poles, 4 rotor poles, and a 
step angle of 30 degrees. With its rotor physical diameter of 
285 µm, thickness of 80 µm, air gap of 3 µm, and a much 
larger stator thickness of 160 µm, the rotor is capable to 
passively levitated in the air gap to provide a maximum speed 
of 34,000 rpm and a output torque of 10-8 N m. 

Based on the similar LIGA processing scheme, a 
three-phase linear reluctance motor was then fabricated by 
Ohnstein et al [3] for the application in a high-pass optical 
filter with a travel range of 0.78mm. Each phase of the linear 
motor consists of 10 teeth, with a width of 30 µm and a pitch 
of 75 µm for each tooth. The linear motor is capable of 
delivering an output force of 4 mN with an operational power 
loss less than 200 µW. 

Since the magnetic properties of the commonly used 
materials will be significantly degraded after electroplating, 
this issue becomes one of the major concerns in fabricating 
micro motors. Guckle et al [1] reported that the permalloy, 

which consists 78% of Ni and 22% of Fe, has a relative 
permeability of 2000 and will be saturated at a flux density 
level of 1.0 T. Nevertheless, through a detailed evaluation on 
various magnetic material processing techniques that are 
commonly used in micro magnetic devices [4], a general 
observation can be concluded that the magnetic materials 
made by electroplating will have much lower permeability. 

The other design constraint in the microfabrication 
process is the cost and geometric limitations for the 
associated motor construction. For practical consideration, to 
provide a larger slot for winding allocation and thermal 
dissipation, contradicting to the conventional motor design 
prospect, a prerequisite in the LSRM design and fabrication 
is to use the number of motor phases as few as possible at a 
designated operational step length. 

Based on the aforementioned material and physical 
concerns, this paper will present the design and performance 
evaluation of a LSRM that is operated with only two phase 
windings while can still be driven bi-directionally. Detailed 
comparisons of motor generated propulsive/normal force 
ratios at various pole shapes and winding excitation levels 
will all be investigated through three-dimensional finite 
element analysis (3-D FEA). Validity of the proposed 

LSRM can be supported by the analyzed results, and an 
optimal structure for fabricating such machine under the 
design constraints can then be identified. 

II. THE MICRO LINEAR SWITCHED-RELUCTANCE MOTOR

To comply with the simple and two-phase winding 
configurations, the two-dimensional conceptual view of the 
basic type LSRM is depicted in Fig. 1. It can be observed 
that the stationary primary and movable secondary poles of 
the motor all have identical size of 1 unit, and the air gap is 
fixed at 0.1 unit. This motor will move 1 unit per step after 
each pair of windings being energized, and the exact length of 
1 unit will be flexible depending on application objectives 
and physical fabrication constraints. 

III. OPERATIONAL FORCES ANALYSES

For preliminary investigation, by selecting the unit length 
as 1 mm, 3-D meshes of the basic type LSRM are depicted 
in Fig. 2. The associated mesh sizes are defined in Table I, 
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and the material selected for electroplating/fabricating this 
motor has a fairly low relative permeability of 400 and a 
saturation knee point of 1.2 T. With the total applied base 
magnetomotive force (MMF) for each step of switching being 
chosen as 8 A t, some of the motor generated electromagnetic 
forces in the propulsive and normal directions at different 
excitation levels are depicted in Fig. 3. Evidently, due to the 
low relative permeability and small MMF, the LSRM will 
hardly get into saturation. 

Since the major operational concern of such a LSRM, in 
the miniature aspects and light-load applications, is to 
provide adequate and smooth force in the propulsive direction 
that can overcome the generated friction contributed from the 
normal directional forces of the motor. Especially at the 
position where one pair of stator and mover poles are aligned 
and the motor is stalled, the subsequently energized stator 
pole pairs must generate large enough forces to conquer the 
entire system static friction. By excluding the applied load, it 
is thus desired to seek the maximum propulsive/normal force 
ratios of the LSRM at various pole shape combinations. Fig. 
4 illustrates three of the pole combinations that are feasible 
for fabrications through present MEMS technology at 
reasonable overheads, and their corresponding fluxes at 

certain MMF excitations as well as force ratios at one step 
length are provided in Fig. 5. From these calculated results, it 
is convincible that Combination #3 which providing a 
designated path for system flux at the propulsive direction in 
the edges of each pole will be a viable selection. 

IV. CONCLUSION

A new micro linear switched-reluctance motor design, by 
incorporating with the MEMS processing scheme, has been 
proposed to achieve low cost and high precision operational 
requirements. With considerations on the degraded property 
of magnetic material after electroplating process and the 
geometric constraints of MEMS fabricating technology, the 
operational performance of those possible motor structures 
have been thoroughly analyzed by three-dimensional finite 
element analysis. From these results, the adequacy and 
feasibility of the proposed LSRM for possible MEMS 
applications under the design constraints can then be verified. 
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Fig. 2. Three-dimensional meshes of the LSRM. 

 (a) Combination #1. (b) Combination #2. (c) Combination #3. 

Fig. 4. Various pole shape combinations of the LSRM. 

(a) Propulsive forces. (b) Normal forces. 

Fig. 3. Electromagnetic forces generated in the LSRM.

TABLE I. MESH SIZES

Mesh Domain Size (mm) 
Outside Boundary (air) 2.5 

Slot (air) 0.3 
Air Gap 0.05 

Machine Poles 0.4 
Pole Tip (0~0.2 mm from the air gap) 0.05 

Fig. 1. Conceptual view of the micro linear switched-reluctance motor. 

(a) Combination #1. (b) Combination #2. (c) Combination #3. 

(d) Propulsive/normal force ratios at different pole displacements. 

Fig. 5. Flux paths and force ratios of the LSRM at various pole shapes.
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Abstract - Purpose of this paper is the optimal design of the 
extremely small thrust VCM (Voice Coil Motor) for application of the 
Nanoindenter, which have to control a very small force and 
displacement. The VCM is designed by the optimization techniques to 
produce a very small force by the difference of flux density of the 
lower part from the higher one. As a result, the VCM produces linear 
driving thrust in a wide range of current.  

INTRODUCTION 

The VCM has profitable advantages of a miniaturization, 
precision position control, a fast response, and a linear 
movement for a relatively long operation distance. Recently, 
most research of VCM is applied to hard disk, pickup 
actuator, and LOA (Linear Oscillating Actuator), but 
research about extremely small force and displacement 
control is almost not performed. Also, there is research 
example that applies to extremely small force and 
displacement control using piezoelectric device 
(Piezoelectric actuator), but focuses on displacement 
control. The piezoelectric device is used widely because 
position control of nano scale is easy, but the complicated 
circuit system is required for force control [1,2]. 
 In this paper, we propose the shape of extremely small 
thrust VCM for application of the Nanoindenter, which 
enable control of a very small force and displacement. And 
the purposes of optimization are the minimization of the 
permanent magnet size for the efficient systems and a 
linearization of thrust for a good control characteristic. The 
finite element method is used to decide the permanent 
magnet position. The characteristic analysis time is 
shortened by the magnetic equivalent circuit analysis 
considering the saturation, and the steepest descent method 
is applied to optimize it. As a result, the VCM produces a 
very small force by the difference of flux density of lower 
part from higher one. Also, in a wide range of current 
(0[A]-1[A]), the VCM produces linear driving thrust by 
saturating the magnetic circuit path. 

PROPOSED MODEL FOR SMALL THRUST VCM 

Fig. 1 shows the general model of the VCM and the 
proposed model [3]. The produced force of the VCM is as 
follows ; 

NBilF �   [N],             (1) 

where, N  is the number of coil turns, B [T] the 
magnetic flux density in the air gap, i [A] the input current, 
and l [m] the coil effective length. In order to produce 
extremely small thrust and manufacture the VCM easily, a 
number of coil turn and an effective length of coil should 

be limited. Therefore, extremely small thrust is related to 
the current or the magnetic flux density. It is difficult to 
control a current less than 1mA. If thrust of serve micro 
level is needed, the VCM should be operated a 0.01[T] 
order level of the air gap flux density. However, in case of 
the small flux density, it is very difficult to keep the 
linearity of thrust in a wide range of current and to 
compose the efficient magnetic circuit. We propose a new 
type VCM to produce an extremely small thrust such as Fig. 
1. The thrust of the proposed model is as follows ; 

ilBBNF )( 21 �� ,              (2) 

where, 1B [T] is the upper air gap flux density and 

2B [T] the down air gap flux density. 

Model (1)        Model (2)      Model (3)     

(a) The general models           (b) Proposed model 

Fig. 1 The general and proposed model of the VCM 

OPTIMAL DESIGN 

The minimization of the permanent magnet size for the 
efficient systems and a linearization of thrust for a good 
control characteristic are the purposes of the optimization. 
The optimization technique is applied the steepest descent 
method[4]. Constraints are decided by a geometrical shape 
of the VCM and assembly of the whole system. The object 
function is  

22 )/(
1)(
VB

Pf � ,              (3)

where, B [T] is the magnetic flux density and V [ 3m ]
is the permanent magnet volume. In a wide range of current 
(0[A]-1[A]), the VCM produces a linear driving thrust 
because magnetic circuit path is saturated by taking square 
in value of the flux density. Table I shows the constraints, 
and Eq. (4) and (5) linear constraints which limit VCM size. 

2X(1)+2X(4)+2X(6)+5�50            (4) 

2X(3)+X(5)�50                (5) 
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TABLE I CONSTRAINTS 

Design variable Lower limit Upper limit 
X (1) 0mm 13.5mm 
X (2) 0mm 20mm 
X (3) 10mm 15mm 
X (4) 2mm 4mm 
X (5) 10mm 30mm 
X (6) 7mm 20mm 

Fig. 2 shows the design variable and Fig. 3 shows the 
optimal design process. The characteristic analysis 
performed by the magnetic equivalent circuit considering 
the saturation. Also, when the position of the permanent 
magnet is situated upward from the center position, the 
leakage flux from the lower air gap becomes much more 
than that from the upper air gap. Therefore, the flux passing 
the upper air gap may not pass the lower air gap. Such a 
phenomenon generates the difference of flux density 
between the lower and the upper air gaps. This the 
difference of flux density generates extremely small thrust. 

Fig. 2 Design variables for VCM 

Fig. 3 Optimal design processes 

For it is impossible to consider the difference of very small 
flux density (0.01[T]) using the magnetic equivalent circuit 
analysis, the most sensitive design variable, upward 
distance from the center, should be calculated by the finite 
element method. As a result, the optimum values of each 
design variable are the same with Table II. Fig. 4 shows the 
thrust characteristic. As a current increase from 0[A] to 
1[A], the thrust is almost linear. 

TABLE II OPTIMAL RESULTS OF DESIGN VARIABLES 

Design variable Optimal results 
X (1) 12.014mm 
X (2) 9.161mm 
X (3) 10mm 
X (4) 2mm 
X (5) 20mm 
X (6) 7mm 

mD 0.9mm 
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Fig. 4 Thrust characteristic according to the current variation 

CONCLUSION

  In this paper, we performed the optimal design of 
extremely small thrust VCM for application of the 
Nanoindenter, which enable control of extreme small force 
and displacement. The characteristic analysis time is 
shortened by the magnetic equivalent circuit analysis 
considering the saturation. The finite element method is 
used to decide the position of the permanent magnet, and 
the steepest descent method is applied to optimize it. As a 
result, in a wide range of current (0[A]-1[A]), the VCM 
produces a very small driving thrust which is almost linear. 
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Design variable 
X(1) : magnet width 
X(2) : magnet length 
X(3) : yoke length 
X(4) : air gap 
X(5) : center yoke length 
X(6) : yoke width 
 Dm : magnet position
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Abstract – This paper deals with the magnetizing system for magnetizing
a large rotor with surface-mounted NdFeB permanent magnets using
the capacitor discharge. In this study, magnetizing-fixture is designed by
analytical calculation of the magnetic circuit, and also characteristics of
magnetizing system are simulated by a transient finite element method.
Finally, magnetizing experiment is done using a 30mF, 1815kJ capacitor
bank. As a result, this work has fully magnetized a large rotor with
NdFeB permanent magnets.

INTRODUCTION

In general, it is more difficult to magnetize permanent
magnet with high-energy, especially a large synchronous
machine rotor with surface-mounted permanent magnets.
Recently, a pulsed field approache becomes more attractive
than a DC or superconductor magnetizing system. The pulsed
excitation current typically lasts only a few milliseconds and
the cost of the system power supply is relatively low[1]. In
such a system, the excitation field is generated by
discharging a large capacitor bank into a magnetizing fixture.

This paper describes design and development of the
magnetizing system for magnetizing a large rotor with
surface-mounted rare-earth(NdFeB) permanent magnets of a
synchronous machine as a whole unit. This system is
composed of maximum 30mF, 1815kJ capacitor bank, circuit
breaker, and a magnetizing fixture. In this study, magnetizing
fixture is designed by analytical method, and magnetizing
cirtuit characteristic is simulated by a transient finite element
method. Finally, results of the simulation are compared with
experimental values.

MAGNETIZING SYSTEM

This work takes anisotropic NdFeB (Br=1.2T) type of
permanent magnet into account. Outer diameter of the rotor
under discussion is 153mm, and axial length 200mm. The
rotor has several pieces of the NdFeB permanent magnet
(W26.7×H9.3×L50mm) with radial magnetization direction
on its peripheral surface. To reach high remanent flux density
of NdFeB magnets, it is necessary to obtain the peak value of
the magnetizing field 2500 kA/m (typically range of
1,600~3,600kA/m[2]). The corresponding magnetic flux
density within the magnets rises up to 4T to 6T peak value,
yielding a very saturated magnetic circuit.

The capacitive discharge magnetizer usually contains a DC
power supply to charge a capacitor bank. Fig. 1 presents a
LRC electric circuit consisted of a loading unit for the
capacitor bank, a discharging unit with the breaker, and

magnetizing fixture.

T

K2

R

C

K1 ic
R c

Lc

MI

 line V0

Fig. 1. Condenser bank discharge magnetizer
(T-transformer;R-rectifier;K1-loading switch;K2-discharging switch;C-
capacitor bank;MI-magnetizing fixture;Rc, L c -MI parameters)

Magnetizing fixture is highly saturated during capacitor
discharge. Therefore, inductance of winding changes little
with rising current. Thus, for simplification, inductance is
considered constant and saturated for caculation of the
discharge current. For such a system, the LRC circuit and its
second order linear differential equation is considered as
equation (1).

=++ 01 idt
C

Ri
dt
diL (1)

As a solution, discharge current with exponential impulse
is described by equation (2) up to the aperiodic limit,

24 CRL accoring to reference [3].

te
L

V
ti

t
o

c sin)( = (2)

The magnetic ciruit of magnetizing fixture is considered as
an one-dimensional magnetic path along the section of the
iron core, airgap, permanent magnet, and the rotor core. In
one-dimensional magnetic analysis, based on the high
saturation of magnetic circuit, B-H curves of the iron and
permanent magnet may be simplified as that induction
changes from its saturation value by permeability µo.

The necessary ampere-turn can be calculated along
magnetic path using the Ampere theorem as follow :

= pcNidlH (3)

The saturated magnetizing inductance is calculated from
the magnetic energy stored within the magnetic circuit. And,
leakage inductance by the winding overhang is calculated
with the same method as in electrical machines[4].

According to the electric and one-dimensional magnetic
analysis[3], magnetizing fixture as fig. 2 was designed for
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magnetizing the PM rotor discussed, which has 158mm of
inner diameter, 560mm of outer diameter, 210mm of axial
length, and total 68 turns of winding number. As a result of
circuit analysis, resistance is 0.0678 at 55°C, the
magnetizing and leakage inductance are respectively 0.725
[mH] and 0.679 [mH].

winding

Magnetizing
fixture

Fig. 2. Configuration of magnetizing fixture

SIMULATION AND EXPERIMENT

Korea Electrotechnology Research Institute, for which
author is working, has a capacitor bank with 200 parallel
capacitors of 150 µF each, which is adjustable voltage up to
11 kV. So, this work decided capacitance of capactor bank
being 30mF by considering time constant of the electric
circuit. As a result of transient FEM analysis, discharge
current and radial component of field intensity within the
PMs are calculated according to discharge voltage. PMs near
the D-axis of rotor become already saturated at 955 V of
discharge voltage, which laid on field of about 2500 kA/m.
At 2800 V (9.56kA of peak current), about 80% of PMs is
expected to be saturated, and at 4745 V about 86%.

Fig. 3. Test set

Test set of the magnetizing system using capacitor bank is
presented in fig. 3. For measuring flux density, hall senor
measurable up to 10[T] was used. The results of
magnetization experiment are presented in fig.4, and table 1.
Experiment results agree finely with those of a transient FEA.
In table I, flux densities in parenthese are one that subtract
pre-magnetized value in PMs. That is, it is flux density
occurred by only discharge current. Of course, at
magnetization of 955 V, pre-magnetized value is included a
little, too. Fig.5 shows flux density distribution on the surface
of the magnetizde rotor in comparison with result of static
3D-FEA. It shows good agreement.
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Fig. 4. Discharge current between FEA and experiment (at 2.8kV)

TABLE I. MAGNETIZATION RESULTS

Discharge Voltage 955[V] 2800[V] 4745[V]
FEA 2.77 9.56 16.56Peak

current[kA] Test 2.53 9.06 15.29
FEA 2.48 3.85 5.09Peak flux 

density[T] Test 2.7 4.4(3.45) 5.85(4.9)
FEA 15.8 11.5 10.5Time[ms]
Test 15.9 12.3 11.5
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Fig. 5. Flux density on the surface of the magnetized rotor

CONCLUSION

This study dealt with the magnetizing system using a
capacitor discharge for magnetizing a large rotor with high
energy PMs. This work designed magnetizing fixture and
magnetizing sytem using analytical method and a transient
FEA, and performed the simulation and experiment for
magnetizing a rotor as a whole. As a result, this work
obtained a rotor with fully saturated NdFeB magnets.
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Abstract �This paper examines permanent magnet eddy current 
couplers and brakes. Specifically, the effect of permanent magnet 
magnetization patterns on the force production is investigated. A two-
dimensional finite element modeling is performed to predict the 
electromagnetic behavior and the force production of permanent 
magnet type eddy current couplers and brakes under constant speed 
operation. The influence of design parameters on the torque-speed 
characteristics of such devices is also presented.

I. INTRODUCTION

Drag forces due to eddy currents induced by the relative 
motion of a conductor and a magnetic field occur in many 
practical devices: motors, brakes, couplings, magnetic 
bearings, and magnetically levitated vehicles [1]. In particular, 
the practicality of using permanent magnets in eddy current 
couplings and brakes is obviously recent, due to the manifold 
improvement in magnet materials and technology [2]. The 
principle behind the operation of such a system relates to 
basic electromagnetic induction theory. The interaction 
between the magnetizing field and eddy currents results in 
forces that oppose (or follow) the movement, producing the 
braking (or coupling) action [3]. The permanent magnet eddy 
current devices are also independent of any electric power 
source and control.  

Using two-dimensional finite element analysis, this paper 
deals with the influence of the magnetization patterns and one 
of the design parameters on the performance of the permanent 
magnet eddy current device, specifically the extent to which 
device performance, in terms of the torque-speed. The 
calculated results are also compared to the experimental data.  

II. STRUCTURE OF PERMANENT MAGNET EDDY CURRENT MACHINES

The permanent magnet eddy current coupling and brake is 
shown in the cross-sectional schematic of Fig. 1.  The basic 
structure of such a device comprises the moving (or 
stationary) set of magnets that are separated from the 
stationary (or moving) conducting cylinder by an air-gap. If 
held stationary, the conducting cylinder acts as a brake; if free 
to rotate, the conducting cylinder will follow the magnet 
cylinder with a relative speed which is a function of the 
transmitted torque.  

As highlighted in Fig. 2, these machines can be configured 
in a variety of types according to magnetization patterns. Fig. 
2(a) shows the topology with the exterior polar Halbach 
magnetization, while Fig. 2(b) shows the topology with 
horizontally magnetized magnets separated by iron pole  

shaft

steel

conductor
air-gap
magnet

Fig. 1. Schematic of permanent magnet eddy current coupling and 
brake. 

(a)                                                    (b) 

(c) (d) 
Fig. 2. Permanent magnet eddy current machine topologies according to 
magnetization patterns : (a) Halbach magnetization, (b) horizontal 
magnetization, (c) radial magnetization, and (d) parallel magnetization. 

pieces. Fig. 2(c) and (d) shows external magnet topologies 
with radially and parallel magnetized magnets, respectively. 
In Halbach magnetized topology, the moving (or stationary) 
part including magnets could be either air- or iron-cored. 

III. FINITE ELEMENT MODEL

When the moving part including magnets rotates, 
currents are induced in the conducting cylinder. The 
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fundamental equations of the A-� method using a moving 
coordinate system [4] are given by 

0rot( rot ) rot grad
t

� � � �

�

� � �

�

� �

� �

� �

M
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A      

 (1) 

div grad 0
t

� �
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� � �

�

� �� �
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� �

A
          (2)

where 
A   magnetic vector potential; 
�   electric scalar potential; 
�, � reluctivity and conductivity of the material, 

respectively; 
M  magnetization vector; 

The total eddy current loss in the conducting cylinder is  
2( ) ( )

1

m e eW I R he i ii
� �

�

� �

� �
           

 (3) 

where, ( )eIi and ( )eRi  represents an eddy current and 
resistance in each element, respectively. h is the axial 
length of conducting cylinder.  

Hence, the torque, T, developed by the brake (or coupler) 
is related to the total eddy current loss, We, and the angular 
velocity, �, as follows: 

/T We ��                 
 (4) 

IV. RESULTS AND DISCUSSION

Figure 3 shows the magneto-static field distributions at 
the air-gap according to magnetization patterns of each 
magnet cylinder rotor topology, respectively. For a fixed 
value of the magnet height, Fig. 4 compares the air-gap flux 
density distributions versus angular position of each 
topology. The torque variation with speed for various 
topologies is calculated and plotted in Fig. 5.  

The influence of design parameters on the torque-speed 
characteristics and the comparison between the calculated 
results and the experimental data will be represented in next 
extended version.  
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(a)                                            (b) 

(c)                                            (d) 

(e)                                            (f) 

Fig. 3. Magneto-static field distributions according to magnetization 
patterns: (a) Halbach magnetization without back-iron, (b) Halbach 
magnetization with back-iron, (c) horizontal magnetization without back-
iron, (d) horizontal magnetization with back-iron, (e) radial magnetization 
with back-iron, and (f) parallel magnetization with back-iron. 
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Fig. 4. Comparison of magnetic flux density distributions of each 
topology versus angular position. 
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Abstract �High-speed brushless permanent magnet machines 
are currently being developed for a number of applications including 
gas-turbine generator sets and machine tools. Due to the high 
peripheral speed of the rotor and the relatively high conductivity of 
the magnets used, rotor eddy current loss can be substantial. On the 
basis of finite element method, this paper deals the flux density 
distribution that caused by slotting harmonics, and the contribution 
of the retaining ring to the total eddy current losses. 

I. INTRODUCTION

High speed brushless permanent magnet machines are 
good for machine tools, aerospace applications, etc, since 
they are conductive to high efficiency, high power density, 
small size and low weight. Due to their high performance 
characteristics, high-speed electrical machines are likely to 
be a key technology for many future applications of motion 
control and drive systems. The most important design 
consideration in the choice of high speed burshless 
permanent magnet machine is the need to minimize eddy 
current losses in the retaining ring and rotor due to slotting 
harmonics. But , the losses in the rotor elements due to 
slotting harmonics are not to easy to determine [1]. 
Therefore, this paper proposes a rectilinear model and 
governing equation. Field equations are solved in two 
dimensional model, i.e. the end effects are neglected.  

II. ANALYSIS  MODEL

A. Analysis Model 

Fig. 1(a) shows a 75,000rpm burshless permanent 
magnet motor with a 24-slot stator carrying a distributed 
winding, and a 2-pole rotor with diametrically magnetized 
sintered SmCo magnets which produce an essentially 
sinusoidal airgap flux density distrubution. And Fig.1.(b) 
shows that the simplified rectilinear model [2]. 

B. Governing Equation  

The governing equation of the analysis model is given by 
Maxwell’s equations for magnetic field intensity H ,
magnetic flux density B ,and electric field 
intensity E simplify to  

0H J�� �

��� ��

                (1) 
0B�� �

��

                 (2) 
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Fig. 1. Analysis models (a) Designed model (b) Simplified Rectilinear 
model 

where 0J
��

, eddy current density induced in the retaining 
ring. Eddy current considering the motion represent as 
follows, 

0 ( )xJ E u B� �� � �

�� �� � ��

            (4) 
where � is the conductivity of retaining ring. Therefore, 
Eq.(1) becomes, 

0
1 ( )A J
�

�� �� �

�� ��               (5) 

A
�

is the magnetic vector potential. Since assuming the 
motion is only x-direction and the eddy current is z -
component, A

�

becomes as follows, 
( )( , , ) ( ) aj t x

zA x y t A y e � ���

�

�� �

         (6) 

where a z
�

is the z -directed unit vector. And � is the space 
order of slotted harmonic factor which defined 1 2mqn�

( 0, 1, 2,..n � � � ), m and n are the number of phases and the 
number of slots/pole/phase, respectively. Consequently, the 
governing equation for the 2-D FEM of analysis model is 
expressed as, 

1 1 0z z zA A A
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     (7) 

where � denotes the permeabillity. 
When the high speed permanent magnet machine rotated, 
induced current density in the retaining ring is, 
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These currents will produce losses in the retaining ring. The 
losses per muit volume are, 

21
2 zP J

�
�

�

���

� �
             (9) 

IV. RESULTS AND DISCUSSION

The curves given in Fig.2(a). shows the flux density 
distribution over two pole pitches as obtained from 
numerical flux calculation using finite element method. 
Fig.2(a). illustrates the considerable decay of the amplitude 
of the slot harmonics as they propagate through the ring 
from airgap. This is because of the high leakage of the slot-
harmonics due to their small pole pitches. 

Therefore more specific losses are expected to take 
place in the ring rather than in the magnets themselves.  

Since the frequency of the eddy currents produced in 
the rotor elements due to stator slotting is proportional to 
the rotor speed [1]. 

Fig.2(b). shows the slotting harmonics characteristics of 
flux density in airgap. These harmonics are produced due to 
interaction of rotor fundamental harmonic with airgap 
permeance harmonics.  
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Fig. 2. Airgap flux density distribution and harmonics 
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Fig. 3. Eddy current losses in the retaining ring 

Fig.3. shows that increasing the speed result in more 
contribution of the ring to the total eddy current losses. This 
is due to the increased damping effect of the eddy currents 
on the side and the faster decay of the slot-harmonics waves 
on the other side. 

V. CONCLUSION

It could be shown, that the total slot harmonics losses in 
the rotor increase quadratically with speed. However, 
increasing the speed will increase the contribution of the 
magnet retaining ring to the total rotor losses. This is 
because of the damping effect provided by the eddy 
currents generated in the rotor. Therefore, for high speed 
applications with critically high speed rotor losses, 
sectionalizing the ring or even grooving its outer surface 
would lead to an appreaciable decrease of the rotor losses. 
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Abstract � Coupling drives are shown to be applicable to a wide 
range of control variables. And Electronic control of the coupling 
offers many new possibilities in process control and industrial control 
applications. This paper develops three dimensional finite element 
method of the eddy current coupling. The flux density distributions 
are also presented using the finite element method. And it focuses on 
the effect of the copper-faced drum and rotor pole shape. So it deals 
with eddy current losses in copper-face drum and torque-speed 
characteristic according to depth of copper.  

I. INTRODUCTION

The eddy current coupling is widely used in industrial 
applications. This paper gives a theory of steady state 
operation of eddy current couplings. And the differences in 
operation between claw-pole and inductor-type eddy-
current couplings are shown and the limitations of inductor 
couplings emphasized. Eddy current couplings always 
contain two members, which can rotate freely with respect 
to one another. The magnetic field is generated by the 
excited coil. The second member is the eddy current 
cylinder of the coupling[4]. This paper analyze the 
magnetic field in the drum of the coupling by finite element 
method for a Lundell type and Inductor type coupling 
respectively. And then, theoretical torque/slip speed 
characteristic and drum-loss according to slip speed with 
various copper depth in the drum are investigated.

II. STRUCTURE AND ANALYSIS

Eddy current coupling is composed of loss drum, 
inductor and excitation coil. Inductor is simultaneously 
excited by the exciting coil. When both members are 
stationary and the field system is excited, a magnetic-field 
pattern of alternating polarity is established. If the pattern is 
now rotated, eddy current field interacts with the air-gap 
flux to produce a torque, which is a function of the field 
current and slip speed[4]. 

Fig. 1. Structure of eddy current coupling 

TABLE I. SPECIFICATION OF THE ANALYSIS MODEL 

Item Value 
Pole pairs 3 

Pole wavelength 28(mm) 
Airgap length 0.5(mm) 

Inner diameter of inductor 101(mm) 
Axial length of drum 75(mm) 
Axial length of pole 70(mm) 

Airgap diameter 101.2(mm) 
Excitation m.m.f 1500(AT) 

Eddy current phenomena are described by the diffusion 
equation. For the steady state time harmonic case, this 
equation, in terms of the magnetic vector potential is  

0
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For the finite element equations for the sinusoidally time 
varing eddy current case, the result is a matrix equation of 
the form  
[ ]{ } { }S T A J� �                (3) 
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where 
iN  is the shape function associated with node i . In 

the unconstrained case the right hand side is a vector of  
known currents which constitute the forcing function of the 
problem[3]. Next the losses by eddy current in the drum is 
calculated. The finite element solution gives the complex 
vector potential at the nodes. The eddy current density is  
J j A���                  (6) 
 The instantaneous eddy current loss is written in terms of 
the current density as  

*Re{1/ 2 }P JJ dxdy�� ���
           (7) 

And the expression for force by using the virtual work 
method then becomes  
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            (8) 

III. RESULTS AND DISCUSSION
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Figure 2 shows air-gap flux density distribution of 
inductor type eddy-current coupling, the operation of this 
type does not depend, however, on reversal of the polarity 
of the magnetic field.  It is sufficient if the filed varies 
between a minimum and a maximum value.  

Fig .2. Flux density distribution in the drum of inductor  
type eddy current coupling 

Figure 3 shows flux density distribution of Lundell type 
eddy-current coupling. Since eddy current of Lundell type 
takes the more poles in the rotor, it can increase the 
maximum torque. So it is widely used for the transmission 
of high power.  

Fig. 3. Flux density distribution in the drum of claw pole type  
eddy current coupling 
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Fig. 4. Radial airgap flux density distribution of  
inductor type eddy current coupling 

Figure 6 shows drum loss according to slip speed . 
Variable output speed  is obtained simply by varying the 
slip power dissipated in the drum. Torque-Slip speed 
curves according to depth of copper faced in drum are 
shown to Fig.7. 
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Fig. 5. Radial airgap flux density distribution of  
claw pole type eddy current coupling 

Eddy current coupling is close in nature to the induction 
motor, it is not surprising that the torque-speed curves of 
the coupling are almost identical to those of an induction 
motor with a high-resistance or solid-iron rotor. When the 
depth of the copper in the drum, torque characteristic about 
the coupling of TABLE I shown that can used in wide speed 
range.   
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Fig. 6. Eddy current loss in the drum of the inductor 
 type eddy current coupling 
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Fig. 7. Torque according to slip speed with  
0.4mm and 1mm copper depth 
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Some Tricks for Modelling Rotating Electrical Machines Using Finite Elements

D. Rodger H.C. Lai and R.J. Hill-Cottingham
University of Bath,

Bath BNES BA2 7AY, UK

� � � � � 
 � �
—Despite world wide efforts and many recent ad-

vances, electrical machine modelling using finite elements can be
computationally very expensive, especially if 3D models are re-
quired. This contribution is concerned with speeding up the pro-
cess. Some examples of line start permanent magnet machines
and induction motors are provided.

I. INTRODUCTION

Finite element (FE) models of some classes of rotating elec-
trical machines can be computationally very expensive, mainly
due to the frequent need for time transient solutions, complex
geometry, coupled circuits and non linearities. Several topics
are addressed in this paper, among which are: Time transient
modelling of machines containing permanent magnets; obtain-
ing a steady state torque speed curve for induction machines;
improving time harmonic models of induction machines using
transient time steps; coupled circuits.

II. FINITE ELEMENT SCHEMES

Most electrical machines have a relatively low ratio of con-
ducting regions to non conducting regions, the bars in an in-
duction machine are a typical example. This would imply that
in 3D it is advantageous to divide the machine up into non con-
ducting regions in which the magnetic scalar potential � is used
and conductong regions in which a vector variable is used (in
our case almost always the magnetic vector potential � but
other choices are possible).

A. Non conducting regions

Non conducting regions are modelled using magnetic scalar
potentials, either the total scalar � , defined as � � � � � � , or
the reduced scalar � , defined as � � � � � � � � " . Here � �
is the total magnetic field intensity and � " is the field defined
as � $ � " � ' " , where ' " is the source current density. The
method has been extended to allow voltage forced conditions
and to produce cuts for solving multiply connected problems
[1]. This is particularly important in electrical machine mod-
elling where the geometry can be very complex and where ex-
ternal circuits are often required. Both scalars give rise to a

Laplacian type equation which has to be solved:� * + � � � . (1)

B. Conducting regions, � scheme

If nodal elements are used to model a rotating conductor in
3D we require a moving Cartesian co-ordinate system which is
attached to the moving conductor. The Cartesian components
of � move with the conducting mesh. If edge variables are
used this process is automatic.

� $ / 1+ � $ � 3 � � 6 8 : �: ; = (2)

For a time transient problem we solve [2], [3],> ? A C � > E A HC � J (3)

Where
C

is a vector of � and � variables.
In 2D usually a scalar version of (2) in terms of K L is used.

III. TIME TRANSIENT MODELLING OF MACHINES

CONTAINING PERMANENT MAGNETS

When modelling a machine containing permanent magnets
(PM), a direct implementation of (3) gives rise to unwanted and
non physical transients due to the PM being ‘switched on’ at
time zero. If the transient performance is required, it is possible
to lock the rotor until the PM switch on effects have decayed
and then begin the real transient solution by releasing the rotor
and energising the supply. It is also possible to solve a magne-
tostatic problem including the PM first and then start the tran-
sient solution from that state, switching on the supply/external
circuit as required. Figure 1 shows the transient switch on of a
60 kW line start PM machine, the graph on the right shows a
machine in which the rotor has been clamped until 2s, the graph
on the left is a machine started from a magnetostatic solution.
Small differences in the graphs may be seen, due to slightly
different rotor position at starting and some residual winding
currents in the clamped machine windings.
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Fig. 1. On line start of a line start machine

IV. STEADY STATE TORQUE SPEED CURVE FOR

INDUCTION MACHINES

The steady state torque versus speed curve is one of the
most fundamental requirements of an induction machine de-
sign program. Unfortunately, it is very expensive to obtain
using a standard finite element approach. For the usual slot-
ted rotor and stator a time transient solution is necessary. This
is expensive because the time constant of these machines can
be of the order of seconds. The time step is governed by the
likely distance a rotor will travel over the time step, something
of the order of 4

�
of travel would usually be acceptable, and

this means a time step of around 0.22ms for a machine at 3000
rpm. Several methods can be used to speed this up, one is to
use a time harmonic solution and ignore the transients [4]. Var-
ious schemes are possible but the simplest assumes that only
one harmonic is present in the machine appearing as the sup-
ply frequency in the stator and slip � supply frequency in the
rotor. Making this assumption we can solve (3) with supply
frequency everywhere and scale the conductivity � as slip � �

(taking care to similarly scale frequency dependent rotor exter-
nal circuit elements).

This may work well where it is valid to ignore such ef-
fects as winding harmonics, tooth ripple, saturation and cog-
ging torque. A more accurate solution can be obtained by start-
ing a transient solution from the time harmonic solution, the
assumption here is that the fields throughout the former are al-
most correct and that the true transient solution can be reached
quickly using this as a starting point. The time harmonic solu-
tion must be found and its value and time derivative at one in-
stant in time is calculated. The transient solution uses this as a
starting value. Figure 2 shows a 4 pole motor at 0.8 slip, torque
versus time. The result is around -20Nm, with some cogging
ripple. It may be seen that the harmonic restart method (small
oscillations on Fig 2) converges in about half the time of the
transient start from zero. It takes longer to converge results at

higher values of slip, because rotor eddy currents are smaller at
rotor speeds near to synchronous. This fact can be exploited,
a torque speed curve can be generated starting from the higher
rotor speeds and using the results as restarts for lower speeds.
It is also possible to use point on wave switching and scaled ro-
tor restivites to speed up these calculations, an expanded paper
would include these methods.
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Fig. 2. Four pole induction machine at 0.8 slip

V. CONCLUSIONS

The methods described here can sometimes save computer
time which is important to the continued acceptance of FE
methods in the design office.
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Abstract�Computation of the transient electromagnetic field, 
actuating force and dynamic characteristics of permanent magnetic 
actuators for vacuum circuit breakers are reported. Both eddy current 
and voltage excitations are taken into consideration. Based on the 
proposed method, a software is developed to analyze and design the 
permanent magnetic actuators. Besides computing the dynamic 
characteristics of the actuators, the software will also produce the 
mechanical drawing together with the electronic control unit details. 
Finally, a design example is discussed. 

INTRODUCTION

Permanent magnetic (PM) actuator for Vacuum Circuit 
Breaker (VCB) is a newly developed mechanism having high 
performance and reliability. Compared with traditional 
actuators, the PM actuator has a new structural design with 
relatively less mechanical parts and less maintenance[1]. In 
order to carry out the optimization study on these actuators, 
one needs to calculate and analyze their dynamic 
characteristics and thus it is necessary to (1) calculate the 
motion speeds of the moving iron (in the PM actuator) and 
the contact electrodes (of the VCB); (2) determine the 
relationship of operating force and opposing force during the 
dynamic process in order to secure reliable mechanical 
motion and hence improving the mechanical impact strength 
to result in longer mechanical and electrical life. However 
the dynamic characteristics of the PM actuator is generally 
governed by the complex transient electromagnetic field and 
mechanical motion that are difficult to analyze because (1) 
the transient electromagnetic field is non-repetitive and 
non-linear; (2) the presence of permanent magnetic materials 
in the actuator; (3) the moving iron produces electromotive 
forces; and (4) presence of eddy current due to the changing 
magnetic fluxes in the actuator. All these problems require 
the solution of coupled problems involving electric circuit, 
transient nonlinear eddy current field and mechanical motion 
of the iron[2,3]. One possible algorithm to study the 
aforementioned problems is to solve the dynamic process by 
calculating the static magnetic field, current and motion of 
the iron [1]. Even though the excitation voltage source model 
has been considered in this method, the eddy current is 
ignored because the magnetic field is considered as a static 
field. However, it has been pointed that the eddy currents 
have very significant influences upon the speed of the 
moving iron[4]. An alternative method is to study the 
transient eddy current field during the dynamic process with 
the current being treated as excitation source in the transient 
model[5,6]. This is nonetheless rather unrealistic since the 
excitation source is voltage and the current is an unknown. 
With the algorithm being reported, the transient 

electromagnetic field, force and dynamic characteristic of 
PM actuator for vacuum circuit breaker are computed. Eddy 
current and voltage excitation are also being taken into 
consideration. A software based on the proposed method is 
developed to analyze and design the PM actuators. Besides 
computing the dynamic characteristics of the actuators, the 
software will also produce the mechanical drawing together 
with the electronic control unit details. Finally, a design 
example is analyzed. 

METHOD AND DESIGN OF SOFTWARE

Dynamic Model of the PM Actuator

The model to analyze the dynamic characteristics of the 
PM actuator for the VCB as shown in Fig.1 are given as 
follows: 

Fig.1 Schematics of a vacuum circuit breaker with PM actuator 

The electric circuit with dc excitation is[1,7]  
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diRU N
�
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For the PM actuator with symmetrical axial structure, the 
eddy current field can be expressed as 
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where Js and A are unknown variables.  
From the above equations, one obtains: 
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where Sc is the cross-sectional area of the coil and N is the 
number of turns.  

Considering the motion equation of the moving parts in 
the VCB with PM actuator one obtains 

)
dt
dx,x(FF
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xdm fmag2
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(4)

where Fmag is the electromagnetic force which can be solved 
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by using the Maxwell’s equation, Ff is the opposing force 
and x is the displacement of the moving iron.  

Using eqs. (3) and (4), the electric circuit, electro- 
magnetic and mechanical equations can then be solved 
simultaneously to analyze the dynamic behavior of the PM 
actuator. The iron moves under the actuating force when the 
electromagnetic system is excited. The position of the iron is 
dependent on the stepping time and new meshes are thus 
necessary for each new position of the iron.   

The Main Units of the Software   

Fig. 2 shows the main modules of a computer design 
software of a PM actuator for 12kV, 40.5kV and 72.5kV 
VCBs for either indoor or outdoor services. 

Fig.2 The main modules of the software 

Fig.3 The PM actuator(left) and its control unit(right)  
 for the 12kV indoor vacuum circuit breaker 

An algorithm which designs and optimises the mechanical, 
electromagnetic and electronic control system are developed 
under the Windows environment. The PM actuator can be 
fed by DC or discharged capacitor. The software outputs 
automatically the structural parameters, mechanical and 
electromagnetic dynamic behaviour, electronic control 
circuit and apparatus as well as the mechanical drawings.  

ANALYSIS AND CALCULATION

When the actuator is close and the current excitation 
circuit is open, the holding force to prevent the actuator from 
opening is only produced by the PM field, instead of the 
traditional interlocking mechanism in the proposed VCB. Fig. 
4 shows the magnetic field for calculating the holding force. 
As the coil is excited, the iron of the PM actuator moves 
quickly. Fig.5 shows the time variation of speed of the 
moving iron. 

In order to validate the method and the software, some 
tests have been done. Fig. 6 gives the experimental results of 
the current excitation and displacement of contact electrodes 
of the VCB. Table I gives the comparison between computed 
and experimental excitation current in the PM actuator. It 

can be seen that the errors are reasonable. 

  Fig.4 Magnetic field to calculate     Fig.5 The time variation of 
  holding force (1/2 model)             speed of moving iron 

Fig.6 Test results of the coil current and displacement of the contact  
electrode of the VCB with PM actuator 

TABLE I. COMPARISON BETWEEN COMPUTED AND EXPERIMENTAL 
EXCITATION CURRENT IN PM ACTUATOR 

Time(ms)  5.0 10.0 15.0 20.0 25.0 30.0
Test Current(A) 9.4 16.3 21.0 23.7 24.2 22.5
Computed 
Current(A) 

8.2 15.1 19.5 22.7 23.0 20.5

Error(%) -12.7 -7.2 -7.1 -4.2 -4.9 -8.9

CONCLUSION

A new algorithm has been proposed to calculate the 
transient electromagnetic field, actuating force, electric 
circuit and mechanical motion of the moving iron. As the 
eddy current and voltage excitations are considered in the 
method presented, very accurate results have been obtained. 
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Abstract�The transient eddy current fields and short circuit 
forces upon the coils of large power transformers is analyzed. The 
proposed approach is based on the A�V�A formulation in which the 
eddy current field and the electric circuit equations are solved 
simultaneously. In order to reduce eddy current loss and reduce local 
overheating, a magnetic by-pass plate near the coil ends is discussed. A 
simulation to study the transient short-circuit behaviour of a 720MVA 
power transformer using the proposed coupled approach is reported. 

INTRODUCTION

The electromagnetic forces on the windings of large 
transformer due to short circuits are generally detrimental. 3-
D nonlinear transient electromagnetic field is used to study 
these transient short-circuiting forces. A transient field study 
using current as the source has been reported [1]. However 
most large transformers are connected to a constant voltage 
source and the short circuit currents in the coils are unknown. 
Recently, there are algorithms to couple the magnetic and 
electric circuits in the simulation of motors [2,3], turbo-
generators and other devices [4-6]. 

Common measure to alleviate the eddy current and 
overheating problems is to reduce the magnetic flux density 
in the metallic clamping plates and tank walls. Shields and 
metals with low permeability are also used to reduce the 
eddy current. However, these measures are insufficient for 
transformers rated up to 720MVA having magnetic by-pass 
plates near the coil ends to reduce the eddy current losses. 

Unlike normal pie winding in conventional transformers 
with negligible axial current and torsional forces[7], the 
spiral coil in large transformers may be acted upon by 
torsional forces due to the presence of axial component of 
the current. Test results show that coil damages due to 
torsional force are not uncommon, hence it is necessary to 
calculate the distribution of torsional force on the coils. 

This paper presents a 3D, A�V�A coupled formulation 
in which the eddy current field and the electric circuit 
equations are solved simultaneously. Some useful results on 
the transient short-circuit behaviour of a 720 MVA power 
transformer findings are obtained in the simulation study.

Besides axial and radial force, the distribution of 
torsional force on the spiral coils is calculated. The 
mechanical robustness and stability of the coil are checked. 
The loss density and magnetic flux density in the clamping 
plate with and without the magnetic by-pass plate is studied.  

A-V-A COUPLED FORMULATION

Electromagnetic Field Equations

From the Maxwell’s equations, the A�V�A formulations 
with the Coulomb gauge can be written as [7] 
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where �1 and �2 are, respectively, the region with and 
without eddy currents, � is the reluctivity tensor, � is the 
conductivity tensor, A is the magnetic vector potential, V is 
the electric scalar potential, t is a unit coil direction field 
vector tangential to the windings, nc is the number of turns, 
Sc is the total cross-sectional area of the windings and i(t) is
the current per turn.  

The matrix of the field equation system can be written as 
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Equation (2) is the conventional formulation where the 
current is used as the input. 

Equations of the Electric Circuit

Power transformers that are connected to voltage sources 
typically have the following circuit equation: 
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where � is the space filled with windings. Moreover, the 
matrix equation of the equivalent circuit can be written as 
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Magnetic Field and Electric Circuit Coupled Equations

Eqs. (2) and (4) give the following coupled equation:  
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The Newton-Raphson algorithm is used to take into 
account of the magnetic non-linearity.  

ANALYSIS AND CALCULATION

Eq. (1) to (5) are employed to compute the transient eddy 
current fields and the electromagnetic forces upon the coils 
in a 720MVA/500kV transformer. Fig. 1 shows the sketch of 
the transformer with the magnetic by-pass plates (1/2 of the 
structure). Fig. 2 gives the magnetic flux density distribution 
in the coils. 

To validate the approach presented in this paper, a 
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17MVA transformer is selected as the test model. The 
corresponding calculated values of magnetic flux density on 
the surface of the iron core and the tested results are given in 
Table I which shows the calculated results agree well with 
the measured ones. For electric equations with known 
terminal voltages, the coupled method is the most suitable 
one for transient analyses of transformer. 

Fig.1    The sketch of  transformer         Fig.2  The magnetic flux density 
with magnetic by-pass plates                    distribution in the coils 

1—convention  2-coupled method           Fig.4  The torsional force of the 
Fig.3 Primary short-circuit currents                   coil sections 

TABLE I COMPARISON BETWEEN COMPUTED AND MEASURED  
MAXIMUM MAGNETIC FLUX DENSITY (mT)

Height (mm) 442 597 900 1057 1125 1198
Computed 6.64 4.87 4.71 2.91 5.66 9.87

Tested 6.1 4.98 4.62 3.10 6.35 9.05
Error (%) 9.6 -1.6 1.1 -9.4 -12.8 8.7

Fig. 3 is the primary short-circuit currents. It can be seen 
that the current computed from traditional method is slightly 
larger than that of the field-circuit coupled method with a 
maximum current error of about 16.7 percent. 

Most power transformers are studied as pie coil models 
with no axial short circuit current. Unlike traditional ones, 
the 720MVA transformer uses spiral coils with axial currents. 
Fig.4 shows the distributions of the torsional force on the B-
phase low voltage coil along the z direction (height of coil). 
It can be seen that the torsional force of the coil sections near 
the end region of the windings is larger than those near the 
middle.  

In order to study the behaviour of the coils under short 
circuit forces, it is necessity to check the mechanical 
robustness and stability of the coils. Based on the calculated 
results presented, the stresses of the B-phase high voltage 
coil are computed using the dynamic analysis method. Table 
II gives stress of the coil sections along the coil height. It can 
be seen that maximum stress appears near the middle of the 
coil. The maximum value is 59.6Mpa which is less than the 

allowable stress of 100~160Mpa for the copper wire in the 
coil. Hence the coils have sufficient mechanical rigidity to 
withstand the short circuit impacts. For low voltage coils, the 
maximum radial force of the coil section in the transformer is 
19207N/m which is less than collapsing critical force of 
36355N/m in the radial direction. Hence there is no radial 
destabilization danger for the coil.  

With conventional designs, there are local overheating in 
the metal clamping plates and pulling plates in transformers. 
The magnetic by-pass plate for the 720MVA transformer 
functions to by-pass the leakage magnetic fields at the coil 
ends from the clamping plates and pulling plates. By 
optimizing the design of the magnetic by-pass plate, the 
maximum loss density in the plates can be reduced by 94 
percent. Table III gives a comparison of the loss density in 
the clamping plate from middle to end along the length 
direction. As the loss in the tank wall is high, a 4mm thick 
copper shield is used to alleviate the overheating problem in 
the tank wall. The total losses in the copper shield and tank 
wall is then reduced by 80 percent as compared to that with 
an unshielded tank wall. Meanwhile, the maximum loss 
density is reduced from 200kW/m3 to 25kW/m3.

TABLE II. STRESS OF COIL SECTION ALONG THE HEIGHT OF THE COIL 

Height 
(mm)  

292 583 875 1167 1460 1751 2043

Stress 
(MPa) 

46.7 55.6 58.5 43.6 59.6 56.2 55.6

TABLE III. LOSS DENSITY IN THE CLAMPING PLATE 
(Loss density 1 (kW/m3)—magnetic by-pass plate, Loss density 2 (kW/m3)—not magnetic 

 by-pass plate, Length of clamp(m)—length from middle to end of clamp plate) 

Length of 
clamp 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Loss density 1 1.3 1.8 2.2 2.1 1.8 1.3 1.4 1.3 1.1
Loss density 2 40.5 35.1 20.2 14.3 20.1 31.0 39.5 30.2 20.5

CONCLUSION

This paper presents a 3D A�V�A coupled formulation in 
which the eddy current field and the electric circuit equations 
in a power transformer are solved simultaneously.  

Besides axial and radial forces, the torsional force acting 
on the spiral coils is computed. By checking the mechanical 
robustness and stability of the coil, one can evaluate whether 
the coils can withstand the short circuit forces. 

By optimizing the magnetic by-pass plate, the losses are 
reduced significantly and hence overheating in the clamping 
plate is avoided. 
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 W. N. Fu, P. Zhou, D. Lin, S. Stanton and Z. J. Cendes 
Ansoft Corporation, 4 Station Square, Pittsburgh, PA 15219, USA 

wfu@ansoft.com   ping@ansoft.com   dlin@ansoft.com   stanton@ansoft.com   zol@ansoft.com  

Abstract—The definition of energy/coenergy in permanent magnets 
for computing magnetic force is still in dispute. There is also the 
practical problem of computing forces when permanent magnets touch 
objects. These problems are addressed in terms of a new definition of 
the energy/coenergy in permanent magnets and by using shell element. 

I.  INTRODUCTION

The method of virtual work is widely used to compute 
magnetic force distributions in permeable materials [1, 2]. 
While this method has many advantages including good 
accuracy and the need to compute only one field solution, it is 
not easily applied in the case of permanent magnets. The 
problem is that the method of virtual work depends on the 
expression used to define the energy/coenergy in the system 
and that several different definitions the energy/ coenergy in a 
permanent magnet exist [3-7]. The uncertainty in the 
definition of the energy/coenergy in a permanent magnet 
creates a practical problem in computing magnetic forces 
when a permanent magnet touches other objects.  

In the paper, a new definition of the energy/coenergy in 
permanent magnets is proposed and a new method for 
computing the force involving permanent magnets is 
developed. The advantages of the new method are: (a) the 
definition of the energy is based on physical principles; (b) 
the expressions of the energy/coenergy in permanent magnets 
and other materials are unified so that energy and coenergy 
have the same relationship both in permanent magnets and in 
other materials; (c) the computed force distributions from the 
energy formulation and coenergy formulation are the same. 
The method is applied to compute the local and global forces 
when a permanent magnet touches another object. 

II.  ENERGY/COENERGY DEFINITIONS IN PERMANENT MAGNET

During the magnetization process [5], the magnetic energy 
in permanent magnet is stored as 
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where the shaded area is shown in Figure 1 and w0 is the 
magnetic energy density at the initial operating point (H0, B0).
This initial operating point is generally unknown because of 
the complicated magnetizing process. It is also impossible to 
evaluate this operating point from a linear-rigid model of the 
permanent magnet.  

In non-permanent magnet materials, the magnetic energy is 
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Thus (1) is consistent with the expression used with other 
materials.  

The magnetic coenergy in permanent magnet is defined as 
WBHW T

���� �
�

d                                      (3) 

Expression (3) can be further expressed as: 
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where the shaded area is shown in Figure 1 and 
0000 wBHw T

���
 is the magnetic coenergy density at the initial 

operating point (H0, B0).
In non-permanent magnet materials, the magnetic coenergy 

is
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Thus the proposed definition is also suitable to non-
permanent magnet materials.  
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Energy density w = |shaded area| + w0    Coenergy density w� = - |shaded area| + w�0
Figure 1  Proposed definition of magnetic energy/coenergy density in 
permanent magnet 

III.  LOCAL FORCE COMPUTATION 

In each element, the derivative of the energy/coenergy with 
respect to a displacement s provides the element’s 
contribution to the nodal force [1]  

constantconstant ��
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W
s
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                      (6)

Here � is the flux-linkage and i is the current. In the coenergy 
formulation, the contribution to the force from each element 
is
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where J is the Jacobian matrix and |J| is the determinant of the 
Jacobian matrix. In the energy formulation, the force is 
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It is easily demonstrated that (7) and (8) are the same. 
It follows from (7) or (8) that the local force depends on 

the initial energy/coenergy. In the full paper, it will be 
verified that the global force in permanent magnet is 
determined purely by dw or dw�. This means that the initial 
energy/coenergy in a permanent magnet can be any value in 
the global force computation. 

IV.  FORCE COMPUTATION WHEN PERMANENT MAGNET TOUCHES OBJECTS

To implement the virtual work method, the expression must 
be integrated along a layer of elements around the object on 
which the force is to be computed. If an object touches 
another object, the integration is along the touched surface. 
Here we model such touched surfaces by using shell elements 
[8]. The derivative of the coenergy with respect to 
displacement s gives the contribution of one shell element to 
the nodal force 
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where Ne is the number of edges of one element and 
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Only the Jacobin matrix J depends on the displacement; the 

shape functions iŵ�  as well as the area e�̂  of the reference 
element are independent of s. Therefore 
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V.   EXAMPLE

The method has been applied to compute the magnetic 
force when one permanent magnet touches another. Figure 2 
shows two rectangular permanent magnets that attract one 

another. Each permanent magnet is 20mm�10mm�1000mm 
and Br=1.1 tesla, �=1.0446�0. The computed force versus 
distance between the two objects is shown in Figure 3. The 
location of the point at zero separation coincides with the 
extrapolated value as the force versus distance curve 
approaches zero. Therefore, the value of the force computed 
when the two permanent magnet objects touch is correctly 
computed. 

Figure 2  Two permanent magnetobjects attract together 
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Figure 3  Computed force vs. distance when the two permanent magnets 
attract together 
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FEM Evaluation of Zero-phase-sequence Characteristics
of 3-ph 3-limb Core-type Transformers 
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Abstract – The paper deals with the zero-phase sequence behavior of 3-
phase-3-limb-core-type two-winding power transformers.  The zero-
sequence-impedance of power transformers depends on both the type of 
iron core and the presence of the tank, particularly in the case of three-
limb core-type two-winding units without a delta-connected winding. A 
theoretical analysis proposes an equivalent network which allows the 
simulation of both the open-circuit and the short-circuit zero-sequence 
behavior of 3-limb core-type units. A finite element simulation procedure 
allows the computation of the linear and nonlinear parameters of the 
equivalent network. Experimental verifications have validated the 
computational procedure and the proposed theoretical approach. 

Keywords – Devices and Applications, calculation of forces and 
other device parameters. 

INTRODUCTION

The steady-state and transient analysis of power system 
networks in asymmetrical conditions require component 
models accounting not only for 3-ph symmetrical operation 
but, also, for zero-sequence operation.   

The zero sequence impedance of transformers depends on 
both the type of iron core and the presence of the tank, 
particularly in the case of three-limb core-type units.  

The paper examines the zero-sequence behavior of three-
phase three-limb core-type two-winding transformers. The 
theoretical analysis proposes an equivalent network which 
allows the simulation of both the open-circuit and the short-
circuit zero-sequence behavior of 3-limb core-type units. A 
finite element simulation procedure allows the computation of 
the linear and nonlinear parameters of the equivalent network. 
Experimental verifications made in steady-state ac and in 
transient dc have validated the computational procedure and the 
proposed theoretical approach.  

The 3-ph 3-limb core-type 2-winding transformer simulated 
by a 3D-finite element code is rated 40 MVA;132 kV/20.8-10.4 
kV; winding connections: Y-Yn, with regulating winding on 
HV side (Fig. 1). Finite element simulation of open-circuit 
zero-sequence behavior allows obtaining the magnetizing 
characteristic shown in Fig. 2.  A sample of the flux density 
vector plot on the surface of the tank of the finite element 
transformer model, during the open-circuit zero-sequence 
simulation with the external winding (HV) supplied at 5% of 
the nominal current is shown in Fig. 3.

Fig. 1.  Three-dimensional finite element model of the 3-ph 3-limb transformer 
rated 40 MVA; 132 kV/20.8-10.4 kV; Y-Yn, with regulating winding on HV 

side. The tank has not been represented in this figure. 
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Fig. 2.  Open-circuit zero-sequence magnetizing characteristic of the 3-ph 3-
limb transformer rated 40 MVA; 132 kV/20.8-10.4 kV; Y-Yn, with regulating 

winding on HV side. 
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Fig. 3.  Flux density vector plot on the surface of the tank of the transformer 
model, rated 40 MVA, during the open-circuit zero-sequence operation with 

the external winding (HV) supplied at 5% of the nominal current. 

ZERO-SEQUENCE OPERATION OF 3-PH 3-LIMB CORE-TYPE 2-WINDING 
TRANSFORMERS

It is customary to distinguish between short-circuit and open-
circuit zero-sequence operation of a 3-ph 2-winding 
transformer, with the understanding that, for this sequence, 
short-circuit indicates that in addition to currents in excited 
windings, currents also flow in other windings short-circuited 
for zero-sequence, as in the case of a delta-connected winding, 
and that open-circuit implies that currents flow only in the 
excited winding, as with other winding star-connected or open-
delta-connected. We also need to specify the supplied winding, 
internal (usually the low voltage one, LV) or external (high 
voltage, HV). The open-circuit zero-sequence behavior is more 
complex than the short-circuit one, because of the role of the 
tank on the reclosing magnetic flux path.  

A physical equivalent network, based on the actual 
electromagnetic configuration of the transformer, is used for 
the interpretation of the zero-sequence behaviour of the 3-ph 3-
limb transformer with two concentric windings. This equivalent 
network is obtained from the magnetic network of the 
transformer by the duality rules.  

Fig. 4a schematically shows the structure of the 
transformer, the tank and a two-node magnetic network 
constituted by the magnetic flux tubes that discretize and 
approximate the actual magnetic field. The permeances 

fa� , fb� , fc� are associated to the flux tubes of the limbs, 

the permeance l� is associated to the leakage flux of the 
central phase (the leakage permeance of the lateral phases are 
not outlined, for simplicity), the permeance 0�  is associated to 
a number of parallel flux tubes connecting the upper and the 
lower yokes and reclosing outside the external windings. This 
last magnetic flux tubes flow partially in the space between the 

external winding and the tank and partially in a circuit having 
the air-gaps between the iron-core and the tank (upper and 
lower side) in series with the tank, usually made by 
ferromagnetic material. However, when the tank is heavily 
saturated, the magnetic flux partially recloses outside the tank.

According to the duality rules, the electric network of Fig. 4b 
is deduced from the magnetic network: each inductance, linear 
or nonlinear, corresponds, one-to-one, to each permeance of the 
magnetic network; a voltage of the electric network 
corresponds to a flux of the magnetic network; a current of the 
electric network corresponds to a magnetic potential difference 
(m.p.d.) of the magnetic network. Per unit value of the 
parameters are used in the analysis of the equivalent network, 
by assuming as reference the corresponding nominal values. 
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Fig. 4.  Three-phase transformer: a) magnetic network; b) equivalent 
electric network. 

The electric equivalent network allows to clearly understand 
the meaning of the short-circuit ( )LV(SCL0 , )HV(SCL0 ) and 

open-circuit ( )LV(OCL0 , )HV(OCL0 ) zero sequence inductance 
of the 3-ph 3-limb core-type 2-winding transformers, seen from 
the internal (LV) or the external (HV) winding and their 
relationship with the electric equivalent network parameters. A 
detailed discussion will be presented in the full paper. 
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Performance

In-Ho Choi*, Sam-Nyol Hong* Gina Kim*, and Jin-Yong Kim*
* LG Electronics Digital Media Research Lab. DCT Group

16 WooMyun-Dong, SeoCho-Ku, Seoul
137-724, Korea

E-mail : ciho@lge.com

Abstract --- To improve the driving sensitivity of an optical
pickup actuator for high density and high speed drive, we present a 
new actuator design using multi-pole magnet by Nd-Fe-B sintered
magnet. We expect this actuator to use in 3-axis actuator for tilt
compensation as well as conventional 2-axis actuator. The
electromagnetic field analysis applying 3-D FEM was performed
and several samples were actually tested. From comparing
simulated data with experimental results, we verified the accuracy
of the simulation and the superiority of the presented method.

INTRODUCTION

An optical pickup actuator is an objective lens moving
mechanism that provides a means to accurately follow the
disk displacement, which is commonly used in digital
audio/video device such as CDRW, COMBO and DVD.
Recently, large-capacity high-density disk and high-speed
drive have become popular. Since drive speed and
physical density of the optical disc have become higher,
better performance and higher servo bandwidth are
required of the actuator. The optical pickup actuator
requires higher driving sensitivity in both the low and high 
frequency domain in order to cope with higher servo gain. 
[1] So far, high driving sensitivity of the actuator has been 
achieved by optimal design for conventional 2-axis
actuator applying one-pole magnet as shown in Fig. 1.[2]
However, it did not come up to our more expectations
because this method has its own design limitation. Now we 
need a new idea to improve the driving sensitivity
dramatically. [4]

In this paper, we propose novel actuator structures
using multi-pole magnet which enables 2 or 3-axis driving
including radial tilting as well as focusing and tracking
motion as shown Fig 2. [3] In order to calculate the
actuator’s force, the electromagnetic field analysis
applying the three dimension finite elements method and
the calculation of the driving sensitivity using programs
specially written by us is performed. Also the parametric
analysis method that can be changed design variable
automatically is used for optimal design of actuator. From
this method, we can maximize the actuator’s driving force
and minimize the non-linearity. Finally, Several samples
are actually made and tested for evaluation. Simulated data
and experimental results are discussed to prove the validity
of the simulation method and superiority of the proposed
actuator.

ACTUATOR MODELING

Fig. 1. Conventional 2-Axis Optical Pickup Actuator

The pickup actuators are controlled by Lorentz's force,
which is produced between magnet and current carrying
coils. There are two basic motions of the pickup actuator.
One is a focusing motion having lens move vertically and
the other is a tracking motion having lens move
horizontally.

In optical pickup actuator, one of the most important
performances is the driving sensitivity. The driving
sensitivity of the actuator can be easily obtained in a
specific frequency domain by the transfer functions of
simplified actuator model that is formulated by the
classical mechanical motion equation and electric circuit
equation as follows. 

In the low frequency domain below the first resonance

frequency f° , so-called DC sensitivity can be calculated

from the following equation:

rk

nB
GS AVL == )0(  [mm/V]                (1)

In the frequency domain higher than f° , so-called AC

sensitivity can be calculated from the following equation:

2









⋅= °

f

f

rk

nB
SVH  [µm/V] (2)

where r and k are the resistance of the moving coil and
the stiffness of the spring, respectively, and fo is the first
resonance frequency. In addition, n, and B are available
coil turns, length and flux density.

Permanent magnet
(NdFeB)

Wire spring
(Be-Cu)

Magnetic Yoke

Frame(damper- UV Gel) PCB

Objective
Lens (Plastic)

Coil (Self Bonded Wire)

Moving part (LCP)
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NEW ACTUATOR AND SIMULATION

As a angle on the cost and performance, proposed
multi-pole magnetic circuits could be composed of only 2-
pole magnet, 2-pole magnet with magnetic yoke, 4-piece
4-pole magnet and 4-pole magnets which are attached to
the back yoke as shown in Fig. 2, respectively.

a) Only 2-pole magnet 

b) 2-pole magnet + Magnetic yoke

c) 4-piece 4-pole magnet 

d) 4-pole magnet

* DC Sensitivity [at 5 Hz ], AC Sensitivity [at 200Hz]
  1’st Resonance Frequency : Focus 55 Hz / Track 55 Hz

Fig. 2 Flux-Density Distribution and Driving Sensitivity Calculation

Also figure 2 shows analysis results of the magnetic field
that generate Lorentz force and calculation results of the
driving sensitivity.

Figure 3 shows the magnetic circuit structure for 3-axis
actuator, which can drive tilt direction for compensating
disc tilt variation as well as focus and track directions.

Fig. 3 Magnetic Circuit Structure of 3-Axis Actuator

TEST RESULTS AND CONCLUSION

In this paper, we have newly proposed optical pickup
actuator using multi-pole magnet and precise analysis
process to improve the driving sensitivity. We can prove
the superiority of the proposed model and the accuracy of
the simulation, from comparison between the calculation
and experimental results as Fig.2 and Table I. 

We expect these useful results to be used for similar
technical field as well as optical storage field

TABLE I EXPERIMENTAL RESULTS

FOCUSING TRACKINGDC[mm/V]: at the 5Hz,
AC[µm/V] :at the 200Hz DC AC DC AC

Sensitivity 1.26 65.8 1.08 63.2

Resistance [Ω] 6.00 5.50

One-
pole
Magnet 1’st Frequency [Hz] 52 53

a) 0.92 54.6 1.42 81.3
b) 1.05 65.2 1.36 78.8
c) 1.85 108.1 1.38 79.1

Sensitivity

d) 1.68 94.5 1.45 85.2
Tilt 1’st Frequency[Hz] / 
DC Sensitivity[degree/v]

125/1.98 (tilt) -

Resistance [Ω] 4.50/5.25(tilt) 4.80

Multi-
pole
Magnet

1’st Frequency [Hz] 56 57
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Focusing Coil

Tracking Coil
Magnet

               Focusing   Tracking
DC Sensitivity 0.98 [mm/V] 1.41 [mm/V]
AC Sensitivity 58.7 [µm/V] 84.0 [µm/V]

               Focusing   Tracking
DC Sensitivity 1.12 [mm/V] 1.39 [mm/V]
AC Sensitivity 66.8 [µm/V] 83.3 [µm/V]

               Focusing   Tracking
DC Sensitivity 1.91 [mm/V] 1.43 [mm/V]
AC Sensitivity 114.1 [µm/V] 85.6 [µm/V]

               Focusing   Tracking
DC Sensitivity 1.77 [mm/V] 1.50 [mm/V]
AC Sensitivity 106.0 [µm/V] 89.4 [µm/V]

                           Tilting
1’st Resonance Frequency.     120 [Hz]
DC Sensitivity(at 5Hz) 2.12 [degree/V]

Tilt Coil
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Abstract �This paper presents the operating characteristic analysis 
of PM-type magnetic circuit breaker with the 2D finite element magnetic 
field solution including non-linearity of the material and an eddy 
current. Change of dynamic characteristic by the eddy current of the 
actuator is quantified from the finite element analysis. A new modified 
model to decrease the eddy current is proposed. The characterisitcs of 
the two models are compared. 

I NTRODUCTION

The purpose of using the circuit breaker is to protect an 
electric power system in an accident. The traditional circuit 
breaker is composed of springs, gears, etc. But, it has a defect 
that the periodic repair and the exchange of parts are needed 
after a great number of actions. The PM-type magnetic circuit 
breaker overcomes its shortcomings and has high reliability 
of the performance, so the advantages drew great attention 
recently[1]. Magnetic saturation and eddy current induced in 
the core body of the linear actuator make the design 
methodology complicated[2]-[3]. In particular, it is very 
important to consider the eddy current in the process of linear 
actuator design, because eddy current led to a time delay in 
the flux build-up and the force production.  And, there is a 
motion delay by millisecond. 

This paper describes the operating characteristics of the 
PM-type magnetic circuit breaker considering the eddy 
current caused in the non-laminated plunger, proposes a new 
modified model. The electromagnetic field, the electric circuit, 
and the mechanical motion are combined for the analysis. 
Change of electric and mechanical characteristic with the 
variation of the conductivity of the plunger is investigated. 
Also a new laminated plunger model is proposed to decrease 
the eddy current effect. The characteristics of the non-
laminated and laminated model are compared. 

ANALYSIS MODEL

The linear actuators can be classified into the moving coil 
type, the moving magnet type, and the moving core type. The 
analysis model is the moving core type with the permanent 
magnet, and shown in Fig. 1. The stator is laminated, but the 
plunger not due to mechanical effect. A motion of the plunger 
is controlled by alternate switching of the excitation coils, as 
shown in Fig. 1. If the current flows across the coil A, the 
plunger is attracted upwards by the excited magnetic flux. 
When the coils opened, the plunger is held at its moved 

position by the permanent magnet. Table � shows the 
designed specification of the PM-type magnetic circuit 
breaker. 

Fig. 1 The designed model of the PM-type magnetic circuit breaker 

TABLE I.  SPECIFICATION OF DESIGNED MODEL 

Input voltage 200 [V] 
Residual Flux density of PM 1.005 [T] 
Width of plunger 232 [mm] 
Height of plunger 77 [mm] 
Moving distance of plunger 20 [mm] 
Force in the plunger by the PM 3000 [N] 

CHARACTERISTICS ANALYSIS 

Fig. 2(a) shows the flux plot of the PM-type magnetic 
circuit breaker when the coils are not excited. The plunger is 
kept by the permanent magnet. After the coil A is excited 
with DC 200V, the flux plot at 0.05 [sec] is shown in the Fig. 
2(b). At this time, the magnetic field changes with the current, 
so does the force exerted on the plunger. 

A simulation is performed when the conductivities of the 
plunger are 0, 105, 106 and 107 [mho/m]. Fig. 3 shows the 
distribution of flux density in the plunger(the region B of Fig. 
2(b)) at 0.05 [sec]. When the conductivity of the plunger is 
not considered, the flux density is almost constant at the 
region. But the flux of the plunger is concentrated on the 
surface of the plunger by the skin effect. 
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(a) When the coils are not excited        (b) when the coil A is excited only  
Fig. 2 The flux plot of the circuit breaker 

Fig. 3 The flux density of the plunger (�  : conductivity) 

PROPOSED MODEL                                                                                          

It is general that the plunger of circuit breaker is made of 
the non-laminated single construction, because the 
transformation of the plunger occurs in a big mechanical 
impact. In this paper, a new modified model which has a 
lamination part in the plunger is proposed to reduce the eddy 
current effect.  

Fig. 4 show the flux plots of the non-laminated model and 
proposed laminated model at 0.06[sec]. It is shown that the 
penetration depth of the flux of the proposed laminated model 
is larger than that of the non-laminated model around the coil 
A. Because the eddy current effect is reduced by the 
laminated part. 

Fig. 5 shows the force characteristic comparison of the 
two models. We know that the differences of the 
characteristics are large when the conductivity of the plunger 
is 1e7[mho/m] from this figure. It is shown that the force of 
the laminated model is larger than that of the non-laminated 
model about 1745[N] when the conductivity is 1e7[mho/m].  

(a) Non-laminated model                     (b) Laminated model 
Fig. 4 The flux plots at 0.06[sec]

Fig. 5 Force characteristic comparison with variation of conductivity

CONCLUSION

This paper describes the operating characteristics of the 
PM-type magnetic circuit breaker considering the eddy 
current caused in the non-laminated plunger, because it has a 
mechanical impact. Change of electric and mechanical 
characteristic with the variation of the conductivity of the 
plunger is investigated. Also, to minimize the eddy current 
effect in the plunger, a new modified model has a lamination 
part in the plunger is proposed and the characteristic is 
analyzed of it by the finite element method. From the 
characteristic comparison of the two models, it is shown that 
the characteristic of the laminated model is better than that of 
the non-laminated model. 
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Abstract � This paper presents an accurate analyis of electric field 
for Charge Transfer System which was recently developed to reduce the 
likelihood of lightning stroke to premise. Since a CTS has many sharp 
metal points, its geometric modeling is very difficult. To calculate 
accurate electric field of the CTS, squuential sub-window technique 
which analyzes local electric field in a small region compared with total 
system is used. The electric fields of brush tip and top of the CTS which 
play an import role in lightning mechanism are calculated. The Flanklin 
rod was also analyzed and compared with the CTS to evaluate the effect 
of brush of the CTS.  

INTRODUCTION

Lightning rod has been used to protect some premises from 
direct lightning stroke which can cause fire, explosion, physi-
cal damage. In recent years, due to the explosive progress in 
computer and telecommunication technology, the secondary 
effect of the lightning stroke became major concern in many 
cases. Electromagnetic field generated by lightning current 
near by a conductor connecting the lightning rod to the 
grounding system may cause malfunction or disruption of 
sensitive electronic equipment. Therefore, lightning protec-
tion of the premises becomes more and more important to 
provide a specified level of safety. The prevention of the 
direct lightning strokes into the premise is the only way to 
eliminate the damages from consequences of the secondary 
effect. 

Charge transfer system (CTS) was recently developed to 
reduce the likelihood of lightning directly to the premise. Its 
idea of preventing the lightning stroke is based on the point 
discharge phenomenon [1]. When sharp-edged object such as 
pointed electrode is exposed to the strong electric field, it 
starts to emit electric current into the surrounding air. This 
current is a result of ionization process in the air surrounding 
the sharpened points and it weakens the electric field. How-
ever, the effectiveness of the CTS has not yet been confirmed 
[2]. Therefore, some works to evaluate the CTS are needed. 
First of all, an accurate calculation of local electric field that 
causes the ionization process is required. But, its accurate 
numerical analysis is very difficult since the CTS has many 
sharp metal points whose geometry is too complex to model. 
In this paper, to resolve this problem a sub-window technique 
is employed. This technique is good for analyzing a model 
whose concerned area is too small compared with the total 
system. 

CHARGE TRANSFER SYSTEM

There are several kinds of CTS according to ionizer types: 
umbrella type, Ball type, Barbed wire type, doughnut type, 
and cylindrical type [2]. All of these CTS have many spiral 
brushes along the axis. Since this geometry is real 3 dimen-
sional, its exact modeling is almost impossible and practically 
not useful. In this paper, the brushes are simplified into many 
narrow disks and modeled by an axisymmetric problem. For 
the analysis of the CTS, an accurate calculation of electric 
field is required since it determines where the initial ioniza-
tion process will start.  

The finite element method (FEM) is most popularly being 
used for electric field calculation. However, the FE analysis 
of the CTS has a critical problem in geometrical modeling for 
the brush of the CTS. The thickness of brush is about 70 [�m] 
whereas its radius is 25[mm]. It means that the concerned 
area is too small to analyze the system accurately. In this 
paper, a sequential sub-window technique using FEM is em-
ployed for calculation of local electric field of the CTS.  

ANALYSIS OF ELECTRIC FIELD OF CTS AND DISCUSSION

We apply the sub-windows technique method to a cylindri-
cal CTS as shown in Fig. 1(a). To calculate the electric fields 
due to the lightning, the thunderstorm cloud is represented by 
a simple electrode on the top line where 1[V] is applied as 
shown in Fig. 1(b). Since the top brush has a high strength of 
electric field, this region is concerned. In the first geometrical 
modeling, the brushes are divided into several groups and 
simplified as shown in Fig. 1(b).  

Axis
V=1 [V]

V=0 [V]

Brush 0�

�

�

n
V

(a) Cylindrical CTS                           (b) Finite element model 
Fig. 1.  Model description
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In the first step, the original model is analyzed with a rela-
tively rough mesh. Its numerical result is used for a boundary 
condition of the second step where the top of CTS and higher 
brushes region are closed up by sub-window. Next, the higher 
brush group is closed up again and exactly modeled with 26 
brushes. Finally, the top brush is closed up once more and 
analyzed. So we obtained electric field distribution nearby the 
top of brush. This procedure is shown in Fig. 2. The electric 
field at the right top brush is 88 [V/m], which is the maximum 
value over the entire system. To calculate the electric field at 
the top of CTS, the sub-window technique is also applied and 
its results are shown in Fig. 3. The maximum electric field at 
the top of CTS is 67 [V/m], which is less than that at the 
brush. It means that the field near the brush can cause the 
very first ionization.  

On the other hand, to evaluate the effect of brushes, the 
CTS without brushes (Flanklin rod) is also analyzed. The 
calculated maximum electric field at the top of the rod is 75 
[V/m], which is greater than that of the CTS. From this result, 
we can infer that the air nearby the brushes is ionized before 
the lightning current is conducted at the top of CTS. 

(a) Sub-window for the Top of CTS    (b) Original model 

Fig.  3. Field intensity of CTS 

Figure 4 shows the induced charge density along the brush 
surfaces at the second sub-window in the Fig 2. From this 
result we can see that the electric field is concentrated at the 
top part in the brushes and there is almost no field in the 
region between the brushes. 

Fig.  4.  Induced Charge at brushes of the CTS 

CONCLUSIONS

The electric field of brush tip and top of the CTS that play 
an import role in lightning mechanism was obtained by se-
quential sub-windows technique. The Flanklin rod was also 
analyzed and compared with the CTS to evaluate the effect of 
brushes. This method can be used for evaluating local electric 
field of all CTS.
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Abstract –This paper describes the field and circuit modelling of 2D/3D 
structure of surface micromachined  (MEMS) accelerometers. This 
comb structure has been able to move only within the plane (two-axes 
movement). The main goal of investigation is to exploit the field method 
to extract equivalent capacitance characteristics to be treated as the 
background for equivalent circuit analysis.

INTRODUCTION

Actually, the task of the designer is complicated by the 
evidence that different energy domains, in general being 
mutually coupled, are involved when modeling micro-electro-
mechanical devices (MEMD), in the frame of more general 
micro-electro-mechanical systems (MEMS). Moreover, the 
designer has to take into account the constraints imposed by 
the process technology, that limit the feasibility of innovative 
devices. 

MicroElectromechanical Systems (MEMS) technology 
has generated a significant interest of academic, research and 
business sectors. The above is caused by very promising 
technology market and as well cost reduction connected with 
microscale devices fabricated by use of silicon technology. 
Due to rapid grow of this market, year after year, the market 
is just segmented. This is also true in the reference to 
accelerometer market. Efficiency of the device development 
is also due to design flexibility, developing of simulation 
tools and CAD systems, integration of mircodevices and 
microelectronics, etc. In general, multi-layer surface 
mircoactuator fabrication process is enough flexible to 
produce advanced device structures. MEMS structure 
development requires reliable fabrication processes and 
flexible CAD/(analysis and optimal design) tools. We could 
treat mask layout tools as complementary to CAD/(analysis 
and optimal design) tools. The device geometry is, in general, 
defined in the mask layout tool, then transferred to integrated 
circuit layout package, while specific surface micromachining 
process ahs been employed. Some specific codes based on 
Finite Element Method could be successfully applied to 
MEMS designing while microdomain physics are also taken 
into account. Such a sophisticated software could allow 
creating 3D structure of the device, full model analysis 
(structural mechanics, electrostatics, fluid flow, vibration, 
etc.). The strongest impulse to the development of such 
advanced tools should come mainly from industrial 
companies; in fact, virtual prototyping of optimal devices 
would determine a twofold benefit: decreasing the total time 
lasting from the device ideation to its implementation as a 

marketable product; reducing the number of fabrication 
experiments on real prototypes; identifying the device of 
minimum cost, given the performance or, conversely, the 
device of maximum performance, given the cost; increasing 
the global quality of the industrial product. 

ACCELEROMETER DESIGN – PLANAR STRUCTURE 

Accelerometers are important devices in the range of 
variety applications such as air bag actuation (by Analog and 
Sandia), microrobots, etc (see Fig. 1). The accelerometers 
available on the market are capable of measuring high values 
of accelerations. The electrostatic comb accelerometer is 
fabricated by use of different techniques like CDV, RIE, Wet 
etching, etc. The relationship between input voltage and 
output displacement has been widely analysed experimentally 
and theoretically in the literature [1]. The accelerometer 
consists of a moving comb teeth, suspended by spring beams 
on both sides, and fixed teeth. The suspension is designed to 
be compliant in the x direction of motion and to be stiff in the 
orthogonal direction (y) to keep the comb fingers aligned. 
The applied voltages on the force unit causes a net 
electrostatic force to pull the movable part in the desired 
direction.  

Fig. 1. Selected  comb accelerometer structures 

EQUIVALENT CIRCUIT MODEL

Energy stored in the device is defined as follows:  
2CU

2
1W �

                                    (1) 

A simplified scheme of a capacitive microaccelerometer is 
shown in Fig. 2. For the capacitive sensing approach, the 
displacement is detected by measuring the capacitance change 
(see formula 2), expressed as a function of displacement of 
moving comb teeth against fixed comb teeth (see Fig.3).  
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Fig. 2.  Analyzed comb accelerometer structure with main dimensions
Total accelerometer capacitance, defined as the symmetrical 
structure (both symmetrical and unsymmetrical structures are 
analysed), is the sum of three following terms: Cp, Cm i Cg: 

gmp C)3n2(C)1n(C)2n(Cs ������                 (3) (4) 

Fig. 3.  Capacitance curves versus x  displacement (d=2�m, s=8�m, 
z=1.5�m, m=p=(s-d)/2, a=5�m). 

Sensitivity of the circuit model along X and Y we could 
express as follows:  

x
Cs

y
Cs xy

�

�

�

�

�

�
                                               (4) 

Basing on the stored energy evaluation (see expression 1) the 
acting force in Y and X direction are expressed by the 
following formulas: 
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and finally (s-symmetrical structure): 
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Acting force along X axis is expressed as follows: 
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and finally (s-symmetrical structure): 
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COMPARATIVE STUDY BY FIELD MODEL

Since most of the analytical solutions (models) neglect 
fringing fields, they cannot predict accurately the dependence 
of the drive force on the moving comb teeth. In order to better 
determine this dependence, numerical three-dimensional 
finite-element method (FEM) for electric field simulations in 
are used. A static FEM computation of electric potential, 
based on tetrahedron elements was carried out (see Fig. 4). 
Fixed potential boundary conditions were assumed. The 
stored electrical co-energy was computed as a function of the 
movable part position. In particular, detailed field analyses 
can be developed for investigating local effects in the steady 
state operation of the device.  

Fig. 4.  Mesh and Emod dsitrbution of 3-D comb accelerometer structure
The comparative study performed for equivalent circuit 

method and field method allows making some improvements 
in final equivalent capacitance formulas. Therefore, the 
discrepancy between both values obtained by means field and 
circuit methods are negligibly small (see Fig. 5). These 
improved analytical formulas are in the next step of 
accelerometer design introduced to optimal design 
procedure (to be presented in full version of the paper).

Fig. 5. Capacitance curves versus y  displacement (d=2�m, s=8�m, z=1.5�m, 
m=p=(s-d)/2, a=5�m) (�,� -field method,.�,�- circuit method;  
1-symmetrical structure, 2-unsymmetrical structure)
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Abstract – The paper presents an approach to minimization of the 
cogging torque in PM machines using surface-mounted magnets with 
discrete skew angle. For the purpose of determining the proper 
arrangement of PM-pole slices, an optimization procedure based on         
a Genetic Algorithm (GA) is applied. The torque and objective function 
are determined from a simplified model for torque calculation. The 
results are validated against the 3D finite element model as well as 
experimental data obtained from a prototype machine. A new outer-
rotor BLDC motor for an electric fan is considered as a sample model.  

INTRODUCTION 

Some applications like servodrives or hdd micromotors do not 
tolerate cogging torque of any level [1, 3 ,4]. Among various 
approaches, skewing is known to be the most effective 
method for reducing of the cogging torque in PM machines 
[1]. There are two alternative solutions, in which skewing of 
either the stator sheet pack (laminated core) or the rotor 
permanent magnets is applied. The latter method is a cost-
effective solution recommended for the machines with short 
stack length [3]. This paper demonstrates how the cogging 
torque can be reduced when replacing continuous skew angle 
of permanent magnets with discrete one along the machine 
length (see Fig. 1). Such a construction of the magnetic circuit 
leads to a great reduction of the cogging torque and its 
optimization procedure is less complicated than that for the 
magnets with continuous skew angle. For optimization of 
skew angle of permanent magnets a Genetic Algorithm is 
applied. 

a) b) 

Fig. 1. Two alternative solutions for skewing of the magnets: a) continu-
ous, b) discrete 

MODEL FOR TORQUE CALCULATION
The skewed magnets need to be analyzed using 3D field 
models [3]. In this paper the simplified model for torque 
calculation, only partially supported by the three-dimensional 
one, is presented. To describe this model, introduce the sym-
bols shown in Fig. 2. 

Acknowledgments: 
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Fig. 2.  Symbols 

The permanent magnet is divided into k identical slices.  
Define a vector  including angular displacements of conse-
cutive slices: =(�1, �2,…, �k-1,�k). Due to cross linkage 
fluxes, the torque density is not constant along the motor axis. 
It can be assumed that the n-th PM-slice, where n = 1…k,
generates the cogging torque Tn which can be approximated 
as:

� � � ����� T
f
fT n

n
  ,                                     (1) 

where:  
fn  –    area under the n-th segment of the torque density curve 

along z direction,  
f    –   total area under the torque density curve along z

direction, 
fn/f  –  weighting coefficient (see Fig. 3), 
T(�)– angular variation of cogging torque (see Fig. 4).  
The above quantities are determined from the standard 3D 
finite element field model using Maxwell stress tensor me-
thod. The overall cogging torque is composed of the torques 
produced by each pole slice 

� � � ��
�

����

k

n nnTT
1simplified �  .                   (2) 

Although the cogging torque values obtained from this mo-
del are not very accurate, they are useful to indicate a dire-
ction of change in the cogging torque while rearranging pole 
shape in the optimization  process. 

-15 -10 -5 0 5 10 15

0.05

0.1

0.15

 z [mm]

 f n/f 

 1  2  3  ...  ...  k-2  k-1  k 
 permanent magnet 

Fig. 3. Variation of fn/f  along z direction for sliced PM poles 
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Fig. 4. Angular variation of cogging torque determined from the 3D FEM 
model 

GENETIC OPTIMIZATION ALGORITHM

Genetic Algorithms imitate the natural selection and the ge-
netics of living organisms while searching the global extre-
mum in Rn. A typical GA consists of three operators, i.e. 
reproduction, crossover and mutation to provide the transfer 
of best features to the successive generations and to overcome  
a possibility of falling into a local minimum [1]. The objective 
function is defined as the absolute average value of the 
cogging torque for its single period. Decision variables are the 
consecutive dislocations of PM-pole slices expressed by vec-
tor , which is constrained with � ��� �� 5.0 .

RESULTS OF OPTIMIZATION 

To demonstrate the results of the PM optimization using the 
Genetic Algorithm, a new outer-rotor BLDC motor for an 
electric fan is considered (see Fig. 5). The machine specifica-
tions are as follows: two-phase, four pole pairs, 150 W, 1,500 
rpm. The outer diameter is 112mm and the total length is 
30mm. Large armature saliency and high-energy permanent 
magnets contribute to generation of considerable cogging 
torque, which produces vibrations transmitted to whole const- 
ruction of the drive. The reduction of the cogging torque is 
thus of great importance in this type of motor. 

a) b) 

Fig. 5 Cross-section of two-phase BLDC motor a), and its physical  model 
b) 

The optimization procedure was performed for the radially-
magnetized poles, composed of two, four and eight  PM-slices 
per single pole and for two permanent magnet widths. Fig. 6 
shows the optimized magnets shapes for the cases considered. 
Fig. 7 compares cogging torque variations for different pole 
shapes. Table 1 summarizes values of torque for the consi-
dered magnets shapes. 

x

z

x

z

b) c)a)

e) f)d)

Fig. 6. Optimized magnets shapes for two, four and eight slices: a), b), c)– 
���=33/45, d), e), f)–����=29/45 (basic shape – all slices in aligned 
position) 
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Fig. 7. Angular variations of cogging torque for two pole shapes, optimi-
zed shape (�/� = 29/45, k = 4 – see Fig. 6e) 

TABLE I. Torque and force values determined from 3D field model for con-
sidered magnets shapes (3D FE calculations) 

PM type 
Maximum Cogging 

Torque  [N·m] 
Average Torque  [N·m] 

(at rated current I=20 A) 
���=33/45 ���=29/45 ���=33/45 ���=29/45Basic shape 

1.90 1.24 0.54 0.51 
Optimized shape k=2 k=4 k=8 k=2 k=4 k=8 

���=33/45 0.37 0.27 0.34 0.48 0.48 0.49 
���=29/45 0.22 0.05 0.05 0.45 0.48 0.47 

CONCLUSIONS

The optimal magnet shape is a four-slice (k=4) with ��� = 
29/45. The reduction of the cogging torque using optimized 
magnets with respect to the basic version is 97%. The pre-
zented method for reduction of the cogging torque can be 
applied in almost all types of electrical machines with the 
surface-mounted magnets. The optimized magnet shape can 
be obtained using either sliced PM poles or a special shape of 
magnetizing device. 
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Abstract  The topology optimization using the density method, 
which determines the optimal shape by distributing the magnetic 
material in the design domain, is attractive for designers of magnetic 
devices because an initial conceptual design can be obtained. But there is 
no report of global optimal result. Moreover if the density method is 
combined with the conventional optimal design method, such as an 
evolution strategy (ES), it is difficult to get a sufficient solution, which 
can realize an actual magnetic circuit. In this paper, a novel topology 
optimization technique is proposed by introducing the modified ES, 
which efficiently utilize the sensitivity analysis to the density method. A 
global optimal topology of actual magnetic circuit can be obtained by 
using the method. The effectiveness of the proposed method is illustrated 
by applying it to the topology optimization of a C-core actuator. 

I. I NTRODUCTION

In the conventional optimization problem, such as size 
and shape optimization, the outline of magnetic circuit should 
be given beforehand. The topology optimization using the 
density method [1-3] does not need such an initial shape of 
magnetic circuit, and this method provides useful information 
for engineers in order to start the design. The topology 
optimization of magnetic circuit using the density method 
combined with the sensitivity analysis is reported in 
references [1-3], but the obtained results are limited to the 
local minimum, because some of the descent method using 
sensitivity analysis is utilized. If the global optimization 
method, such as ES, is used in the density method, it is not 
easy to get a sufficient solution, which can realize an actual 
magnetic circuit. 

In this paper, ES is combined with the sensitivity 
analysis (modified ES) in order to get a continuum shape, and 
then the modified ES is applied to the density method to 
obtain the global optimal topology of magnetic device. The 
proposed method combined with the finite element method is 
applied to the topology optimization of a C-core actuator.  

II. METHOD OF ANALYSIS

A. Density Method 

In the density method, the material density  of each 
element is the design variable. The expression of relations of 

 and the permeability  can be written as: 

10,110
p

r  (1) 
where 0  is the permeability in vacuum, r  is the relative 

permeability of magnetic material (iron), and p is the 
penalization factor ( = 2 ). In order to decide clearly the shape 
of material, such as iron core, let  be a discrete value. If 

 is larger than 0.5,  is set to 0r  (iron), otherwise, it 
is equal to 0  (air). In addition, the relative permeability 

r  of iron is set to 1000 in this analysis. 

B. Modified Evolution Strategy 

The design variable  is updated in the conventional 
ES by 

ijpioi R    (2) 
where oi  is an offspring individual, pi  is a parent 
individual, j  is a mutation step length in the j th generation, 
and iR  is the random number of [ -1,1 ]. 

When the conventional ES is applied to the density 
method, it is difficult to get a continuum result. Then, the 
sensitivity analysis is combined with ES. This is called as a 
modified ES. The design variable is updated in the modified 
ES by 

i
j

j
jpo R

)||max( s
s

  (3) 

where o  is the offspring vector, and p  is the parent 
vector. max(|sj|) is an absolute value of the maximum 
component of vector sj, and js  is a sensitivity vector with 
respect to . js  is given by 

T

n

j

k

jjj
j

WWWW 11

2

1

1

1s  (4) 

where Wj-1 is the objective function in the ( j-1 ) th generation, 
n is the number of design variables. kjW 1  is 
approximated by the forward difference method as follows:

)()( 111 kjkj

k

j WWW
     (5)

where  is the perturbation in the k th permeability k .
In this optimization problem, the initial value of mutation step 
length j  is chosen as equal to 1.0. If j  becomes less 
than 0.3, the calculation is stopped. The number of searches 
per one generation is set to 600. 
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III. NUMERICAL EXAMPLE

A. Analyzed Model and Objective Function 

Fig.1 shows an analyzed model of C-core actuator. The 
2-D finite element method using quadrilateral elements is 
used. The number of elements is 13650. The initial material is 
air in the design domain, where there are 2400 design 
variables (elements). 

The design goal in this problem is to maximize the 
x-component of the electromagnetic force fx of armature. The 
objective function W is given by the following equation: 

xfW 1    (6)
The nodal force method [4] is used for the calculation of fx.

B. Results and Discussion 

The obtained shape by the conventional ES and the 
modified ES are shown in Fig. 2. The shape obtained by using 
the conventional ES is not continuum. This is because there 
are too many combinations of design variables, and the search 
of the global optimal solution is failed. On the contrary, the 
solution obtained by the modified ES can be realized as an 
actual magnetic circuit, and is considered as a global solution. 

Fig. 3 shows the flux distributions. Since there are many 
voids in the core obtained by the conventional ES, the flux 
distribution is distorted. On the contrary, the flux distribution 

is smooth in the shape obtained by the modified ES. The force 
| fx | obtained by the modified ES is 15.31 N, and considerably 
larger than that obtained by the conventional ES (| fx | = 1.75 
N). Fig. 4 shows the change of the objective function. The 
convergence in the case of using the modified ES is better 
than that of the conventional ES. 
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Abstract From the application of genetic algorithm (GA) to the
optimal design of some electromagnetic devices, it is found that its
convergence speed is directly affected by the similarity of crossover
codes. Based on the analysis for crossover operation a crossover-
controlled genetic algorithm (CCGA) is presented. On the basis of finite
element analysis the optimal magnetic field distribution in sulfur 
hexafluoride interrupter is obtained by applying CCGA. As a result 18.8
percent of CPU time taken by GA is saved and the interrupting
performances at no load and short circuit currents are improved.

I. INTRODUCTION

Generally speaking, global optimization methods, such as
simulated annealing, evolution strategy and genetic algorithm
(GA), exchange optimal solution with many function
evaluations, i.e. many numerical field computations.
Although GA is the most powerful, it is necessary to do 
further research for accelerating its convergence. 

One of the further developments for sulfur hexafluoride
(SF6) circuit breakers is the application in power distribution
systems which rated voltages are not more than 35kV. When
utilized for power distribution, SF6 circuit breakers sometimes
use arc-rotated interrupters because of their simple structure.
But its interrupting capability depends on the value of current
to be interrupted. The lower the interrupting current is, the
weaker the flux density induced, the slower the arc rotation,
the longer the arcing time, and even interruption failure
occurs. For this reason some permanent magnets are used in
the interrupter to increase the flux density at no load. On the
other hand, at short circuit current optimal magnetic field
distribution can decrease arc curling, which is mainly caused
by some parts of rotating arc with different angular
frequencies.

This work supported by FOR YING TUNG Education Foundation and
Natural Science Foundation of Hebei Province.

II. CROSSOVER-CONTROLLED GENETIC ALGORITHM

Genetic algorithms have been shown to be highly efficient
in design optimization applications for electromagnetic
devices [1]. Crossover is their most important operation to
generate new points, i.e. individuals, in the feasible domain in
the search for the minimum. This operation is carried out
between a pair of parents chosen randomly. After the
exchange of genetic codes new points are generated and have
a part of the genetic characteristics of their parents. 

Crossover has several models, e.g. one-point, two-point,
multi-point, uniform crossover, and so on. Now use binary
string to codify design variables. In case of similarity or even
identity between a pair of bits to be exchanged, such as 
1111111 and 1111110 or 1111111 and 1111111 it is very
likely or even sure that this crossover operation does not
exchange any genetic characteristics of the parents, no matter
what kind of crossover model is applied. So it is necessary to
consider the similarity before crossover, and then determine
whether the crossover operation is made or not. The genetic
algorithm, in which crossover is not operated for every pair of
bits predetermined, is named crossover-controlled genetic
algorithm (CCGA).

Let L be the length of bits that are randomly selected in 
chromosome, Ls the number of same corresponding codes
between a pair of bits to be exchanged, and Ls/L the
similarity. If Ls/L > , cancel the crossover and continue
between another pair of parents, where [0.8, 0.95]
generally and Ls/L [0, 1]. If =1, CCGA becomes GA. 

A global optimization example:

)
5

2cos9)20(
10
1(30)(min

1

2
i

i
i xxXf

3
            (1) 

 s. t.  1 39       for  i=1, 2, 3

where X=(x1, x2, x3)T and f(X) are variable vector and
objective function, respectively.
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If using population number np=100, generation number
ng=100, crossover probability pc=0.8, mutation probability
pm=0.1 and inversion probability pi=0.01, the optimization
results with GA and CCGA are shown in Table I. It is found
that 12.1 and 15.5 percent of CPU time taken by GA can be
saved by CCGA with equal to 0.833 and 0.875,
respectively.

TABLE I.  RESULTS FROM (1) WITH GA AND CCGA 

      CPU Time (s)    Function Evaluations        Optimal Point X* f(X*)
 1.000       0.116                       3833                    (19.95, 20.04, 20.08)T     3.07
 0.833       0.102                       3551                    (20.07, 20.07, 19.93)T     3.11
 0.875       0.098                       3578                    (20.02, 19.97, 20.09)T     3.06

III.  INVERSE PROBLEM IN SF6 INTERRUPTER

Desirable Flux Density Distribution

The arc-rotated interrupter with permanent magnets is 
shown in Fig. 1. The moving arc column in the magnetic field
is driven by Lawrence force and encounters gas flow
resistance. If some simplifications are made and the arc is not
bent during rotation, the transverse flux density at a given
point j on the arc can be approximately expressed as [2]

5.05.0
j

2
j

2

j )10( ir

rK
B         for j=1,2, ,n                (2) 

where K is constant, angular frequency of arc rotation, rj

radius of given point j, n number of given points on arc, and i
arc current, i.e. coil current. 

To avoid arc curling,  at any point on the arc is required
to be almost identical. So the flux density distribution
following (2) is expected. 

Fig. 1. Original and optimized magnet structures in SF6 interrupter 

Inverse Problem 

The diameter of the copper cover is unchanged and to fix
the structures of the permanent magnets needs four design
variables, as shown in Fig. 1. 

To prevent arc curling it is necessary to make every point
on the arc rotate at as closely the same angular frequency as 
possible. Therefore the inverse problem can be written as the
following optimization problem.

n

k
kn

Xf
1

1)(min

   s. t.    ai xi bi      for  i=1,2,3,4                                  (3) 
                      x1+x3 c1
                      x2+x4 c2

where X=(x1,x2,x3,x4)T is the design variable vector, f(X)
objective function, the mean value of n angular
frequencies, and ai, bi, c1 and c2 are constants. 

Optimization Results

If taking current density J0=50A/mm2, the original and 
optimized results are given in Table II. 

TABLE II. RESULTS FROM (3) WITH GA AND CCGA AT J0=50A/mm2

x1 x2 x3 x4 f(X)          Function            CPU
                  (mm)   (mm)   (mm)   (mm)                      Evaluations      Time (h)
Original    30.0      30.0     30.0      30.0       0.581
GA            79.2     20.4      19.7     61.0       0.494              6288             3.73
CCGA       80.3     19.2      20.1     60.4       0.501              5102             3.03

It is found from Table II that the global solution can be
obtained with CCGA, using 18.8 percent less CPU time
compared to GA. 

IV. CONCLUSIONS

Compared with GA, CCGA has higher convergence speed
and better convergence for applying a more efficient
crossover operation.

Permanent magnets used in the arc-rotated interrupter of 
SF6 circuit breakers can increase its interruption capability
without load current. On the other hand, the optimal structure
of the permanent magnets to decrease arc curling in short
circuit current interruption is obtained by combining FEM
with GA or CCGA. 
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Abstract�Tanks to the success of the design of an emigration 
operator and the introduction of other approaches such as the fitness 
sharing, the clustering method, and the elitism strategy, an emigration 
genetic algorithm is proposed for the vector optimizations of 
electromagnetic devices. Numerical results are reported to demonstrate 
the effectiveness of the proposed algorithm for solving engineering 
multiobjective optimal design problems.  

INTRODUCTION

Most of the real-world optimal design problems involve 
several incommensurable and often conflicting objectives. 
The traditional exact ways such as linear programming and 
gradient-based searches will encounter great difficulties when 
they are used to solve such Multi-objective Optimal Problems 
(MOP). Fortunately, the recently developed Evolutionary 
Algorithms (EA) have been proved to be one of the most 
efficient MOP solvers, and thus have attracted increasing 
attentions of both academics and engineers alike [1]-[2]. For a 
multiobjective solver, the following two issues must be 
addressed carefully: (1) how to accomplish the fitness 
assignment and selection in order to guide the search towards 
the Pareto-optimal set, and (2) how to maintain a diversity 
population in order to prevent premature convergences and to 
smooth the sampled Pareto front. In this point of view, a 
Pareto emigration genetic algorithm is proposed in this paper. 
To preserve the diversity of the searched Pareto solutions and 
to smooth the Pareto front, an emigration operator is 
introduced. The approaches such as the fitness sharing, the 
clustering method, and the elitism strategy to strength the 
robustness of the proposed algorithm are also improved and 
used. To validate and to show the advantages of the proposed 
algorithm, computer simulation results on two numerical 
examples are presented. 

A PARETO EMIGRATION GENETIC ALGORITHM

Emigration Operator 

In a real-life society, when a town is populated with too 
many residents, there will be great competitions and the 
living resources may be scarce. Then some people may 
immigrate to other towns to survive rather than to stay in the 
city for dieing out. In view of an optimization problem, the 
effect of this emigration operation is to maintain a diversity of 
the total national populations. In this point of view, an 
emigration operator is introduced and explained as: 

Step 1 Find out the maximum distance among those of 
every two solutions in the population, and define a town 
radius which is proportional to this maximum distance. The 

number of solutions which will emigrate to near towns is 
proportional to the population size. 

Step 2 Determine the neighbor size of every individual by 
comparing its distances to neighborhood solutions with the 
pre-defined town radius. The neighbor size of an individual is 
proportional to the number of the neighborhood solutions 
whose distances to the specified individual exceed the pre-
defined town radius.  

Step 3 Identify, respectively, the solutions with the 
maximum and minimum neighborhood sizes, and then 
replace the maximum one by a new generated individual. The 
new individual is generated from the individual of minimum 
neighbor size by adding a small perturbation to it. 

Fig. 1. A schematic diagram of the emigration operation

Fitness Assignment 

Similar to but different from the Pareto based fitness 
assignment strategy [1], the fitness value of a individual in the 
proposed algorithm is assigned in the following steps: 

Step 1 Fitness assignment of the excellent tribe. Introduce 
an external population which is called the excellent tribe, and 
copy the non-dominated solutions of the population to it. The 
fitness value of a solution i in the external excellent tribe is 
determined from 

N
nNfi

�

��1                                 (1)  

Step 2 Fitness assignment of the population. The fitness 
assignment of an individual j in the population is evaluated 
according to the following procedures: (1) firstly, one 
identifies the solution with the smallest fitness value among 
solutions in the excellent tribe which dominate individual j,
and define the smallest fitness value as smallestfitness; (2) 
one then sums up all the num of the nondominated solutions 
in the excellent tribe which dominate individual j as totalnum 
(the num of a nondominated solution is given by 

)2( ifNnum ��� ); (3) the fitness value of the individual j

Town A Town B
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of the population is then given by 

totalnum
1tnesssmallestfi �

�jf                           (2) 

where n in (1) is the number of individuals in the population 
which is dominated by the specific solution of the excellent 
tribe, N is the size of the population. 

An illustration of the fitness assignment of the proposed 
algorithm for a minimization problem with two objectives   is 
given in Fig. 2. From Fig. 2 and (2), one can see that a non-
dominated solution always has larger fitness values than those 
of individuals in the population. Moreover, the solutions in 
densely populated regions have smaller fitness values than 
those in the sparsely populated regions, other things being 
equal; and the individuals of population which is dominated 
by more nondominated solutions have relatively smaller 
fitness values. Since the smaller the fitness value of a solution 
is, the lower the probability of accepting the specific solution 
as new parent, the proposed fitness assignment strategy would 
have the ability to obtain a uniform and smooth Pareto front.  

The details about other improvements such as the local 
search, the fitness sharing, the clustering method, and the 
elitism strategy will be explained in the full paper. 
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Fig. 2. Fitness assignment for a minimization problem with two objectives

NUMERICAL EXAMPLES 

Two numerical examples are solved by using the 
proposed algorithm to validate its feasibility and robustness 
for solving multiobjective optimal problems. 

Example1: A two decision variable and two objective 
mathematical function as formulated as 

)21,41(
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                    (3) 

Example 2: The geometry design of the multi-sectional 
pole arcs of large hydro-generators as detailed in [3]. 

The comparison of the searched Pareto solutions obtained 
by the proposed algorithm and a traditional genetic algorithm 
for the mathematical function is shown in Fig. 3. And the 
sampled Pareto front for example 2 are depicted in Fig. 4. It is 

very clear that (1) the Pareto front of the mathematical 
function obtained by using the proposed algorithm are more 
uniform and smooth compared with those by using a 
traditional one, which suggests that the proposed algorithm is 
more robustness in sense of producing a satisfactory Pareto 
front, (2) the proposed algorithm yielded almost the same 
Pareto solutions as those searched by a tabu based approach 
[3], demonstrating its feasibility for solving practical 
engineering multiobjective optimal design problems. 
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Abstract This paper describes a tolerance analysis concerned with an 
axial displacement on a BLDC motor. The axial displacement occuring 
in productions of a BLDC motor directly affect its torque ripple. 
Therefore,  the tolerance analysis is vary important for improving a 
robustness of its production and this work is accomplished by a 

stochastic simulation introduced to overcome a disadvantage of Monte 
Carlo Simulation.  

INTRODUCTION

Permanent magnet BLDC motors are increasingly being 
used in high performance applications. In many case of 
applications, torque ripple characteristics of BLDC motor are 
of basic concern. There is no exception for a BLDC motor 
employed as the electric power steering of vehicles. This 
motor is requiring low level of the torque ripple for 
comfortable steering of a vehicle [1]. 

Generally, the production of the electric machine needs 
allowance for dimensional or positional tolerances of design 
variables due to limitations on the manufacturing and 
measuring precision on every part. These dimensional 
tolerances, however, can effect on a electrical performance of 
electric machines. A axial displacement between the stator 
and the rotor occurs when the BLDC motor is produced. And 
the axial displacement has an influence on a cogging torque 
of the BLDC motor. So, this torque directly affect a torque 
ripple of the motor. Therefor, it is necessary for an tolerance 
analysis concerned about the axial displacement on a design 
stage before manufacturing the BLDC motor. 

The tolerance commonly can be treated as random 
parameters, and an expression for an uncertainty of design 
variables and ouputs can be accomplished by a stochatc 
simulation. One of the widely used methods, which is based 
on sampling for the stochatc simulation, is Monte Carlo 
Simulation. This method is powerful tool to predict the 
effects of manufacturing variation. But, the biggest 
disadvantage of the Monte Carlo Method is that it requires 
large samples to achieve reasonable accuracy. On the other 
hand, introduced in this paper, the Stochastic Response 
Suface Methodology (SRSM) treats the uncertainty of design 
variables as stochastic variables. And the SRSM 
approximates the output function by using a polynomial 
fitting and samples the approximation to calculate statistical 
distribution of outputs .

The SRSM is based on sample points, which could be 
obtained by using 3D-EMCN combined with 2D-FEM, which 

is proposed to analyze the cogging torque having the axial 
displacement on the BLDC motor. 

CONCEPT OF FORMULATION METHOD

Concept of Stochastic Response Surface Methodology 

In the SRSM, a relationship of the uncertainty between 
the outputs and inputs is addressed by the series expansion of 
standard normal variables in terms of Hermite polynomials. 
Therefore, the output can be approximated by an expansion 
known as polynomial chaos expansion as follows [1];  
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y = a a a

a

+ + +

+

      (1) 

where, y is the random variable representing the output of a 
model, the p( i1 , , ip ) are Hermite polynomials of degree 
of p and a’s are unknown coefficients to be estimated.  

Introductory Statistics for tolerance Analysis 

A variation band and uncertainty of design variables with 
assuming the distribution of a normal distribution. In this 
symmetrical distribution, the tolerance band of design 
variables is easy to quantify in terms of the percentage of the 
area that will occur between one, two and more standard 
deviation from the mean as follows [1]; 

( )±x = n n = 1, 2, 3,    (2) 

Modeling variation of outputs according to tolerance of 
design variables is built by the SRSM. From a set of N 
samples, the basic moments of the distribution of an output yi

can be calculated as follows;

1
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where, yi is a mean, 2
y   i is a variance and yi is a standard 

deviation, respectively. 
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ANALYSIS MODEL AND PROPOSED ANALYSIS METHOD

Fig. 1 shows the longitudinal cross-section of the analysis 
model. The stator of the permanent magnet BLDC motor has 
18 slot and the rotor is bult with 12 tiles of radial and skewed 
magnetic. Axial displacement in the manufacturing of the 
skew mounted permanent magnet BLDC motor needs to be 
analyzed  by a full 3D-analysis, such as, 3D-FEM. This 
approach, however, is too computationally expensive to 
produce results in a reasonable time, therefore, an alternative 
method must be found. In this paper, a proposed method is 
taken with two sections shown in fig. 2, so called, lateral 
section and radial section. The former is constructed with 
both the lateral flux and the radial flux, flowing from the rotor 
to the stator. The latter is composed of radial flux only 
crossing from the rotor to the stator. In order to analyze the 
cogging torque of each section, the lateral section employed 
the 3D-EMCN [2], and the radial section used a multi-slice 
technique based on 2D-FEM, where is assumed that the radial 
flux only acting on the air-gap. The totality of the analysis is 
found by superimposing both the 3D-analysis and the 2D-
analysis.

Stator

PM

Rotor

Axial
displacement

Stator

PM

Rotor

Axial
displacement

Fig. 1. Longitudinal cross-section of analysis model 

Lateral Section

Axial 
Displacement 
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3D

2D

Lateral Section

Axial 
Displacement 

Multi-sliceRadial Section

Lateral Section

End Winding

Stator

Rotor

Shaft

3D

3D

2D

Fig. 2 Proposed sections of analysis model and multi-slice technique 

RESULTS AND DISCUSSION

Fig. 3 shows a comparison between both results of the 
cogging torque obtained form the actual experiment and the 
proposed analysis method. So, a validity of proposed analysis 
method is verified from the experimental results. And then, 
by using a combination technique employing the SRSM and  

the proposed analysis method, results according to the 
analysis of the tolerances were obtained with 10 (%) and 
5(%) tolerance of all design variables, as shown in Fig 4. 
These results show that, when design variables are controlled 
with tighter tolerance, the scatter of the set of the cogging 
torque is extremely centralizd in the mean of its population. 

CONCLUSIONS

In this paper, the tolerance analysis is accomplished by 
the SRSM combined with 3D-EMCN and 2D-FEM. It offers 
the predicted variations of the cogging torque according to the 
axial displacement of the motor. In most cases of manufacture 
the axial displacement can be inevitably happening in the 
BLDC motor. Therefore, the tolerance ananlysis must be 
considered on the design stage, because that would lead a 
production of the BLDC motor to be robust. In full paper, 
more descriptions of this work will be presented in detail. 
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Abstract  In this paper, a novel algorithm for multimodal function 
optimization is developed based on the concept of evolution strategy. A 
new concept, named as restricted evolution, can yield more improved 
characteristics than conventional approaches used for the multimodal 
function optimization. The efficiency and usefulness of the proposed 
method will be verified by the application to various cases. 

INTRODUCTION

Recently, algorithms to find more than one local optimum 
of a function, which is usually referred to as a multimodal 
function optimization, have been widely studied. Most of the 
studies were based on the genetic algorithm (GA). Various 
concepts have been introduced, such as sharing [1], 
deterministic crowding (DC) [2], restricted competition 
selection (RCS) [3,4] and so on. Basically, however, 
algorithms based on the GA tend to converge slowly 
compared to other heuristic algorithms. 

Nowadays, there have been some attempts to apply the 
evolution strategy (ES) to the multimodal function 
optimization [5]-[7]. Most of the approaches adopted some 
concepts of GA, such as crossover and sharing. The main 
characteristic of them is to cluster neighboring solutions 
around a peak. However, excessive application of the GA 
concept may lose the powerful advantage of the ES, 
deterministic-like convergence that yields faster convergence 
characteristic than the GA.  

In this paper, a novel algorithm for the multimodal 
function optimization is developed based on the concept of 
the ES. A new concept, named as restricted evolution, is 
proposed to realize the multimodal function optimization 
scheme. The concept excludes solutions from clustering with 
their neighbors and makes only one solution survive for each 
peak. Hence, the proposed concept is more efficient and 
practical than the conventional ones because the smaller 
number of population is required. Moreover, it has additional 
advantages that it is easy to implement and shows fast 
convergence because it keeps the basic process of the ES. The 
efficiency and usefulness of the proposed method will be 
verified by the application to various functions. 

PROPOSED ALGORITHM

As stated before, the main feature of the proposed 
algorithm is the separation of neighboring solutions, which is 
very different from the conventional ES applications in [5]-
[7]. In the case of the GA, the concept of the RCS is 
somewhat similar to that of the proposed method [3,4]. 
However, in the case of the RCS-GA, niche radius should be 
determined preliminarily before the optimization process, 
which is very hard to determine because the shape of an 
objective function cannot be estimated. Whereas, for the 
proposed method, the evolution range can be modified during 
optimization process by checking the convergence rate. The 
proposed method adopts the concept of elite set, which can 
store superior solutions with some distance between each 
other. The members of the elite set are replaced with much 
superior or improved solutions during the evolution. Total 
process of the proposed algorithm is as follows. Detailed 
explanations will be shown in the full paper with illustrations. 

Step 0 – Initialization 

Setting min,i , max,i , and init,i for each design variable. 
i : Evolution range for i-th design variable. If i-th design 

variable is pi, the child generation is generated within [pi - i,
pi + i], where min,i < i < max,i. This factor is modified 
during the evolution and every elite set has different ranges 
except at the starting time.  

min,i : Minimum distance between two elite solutions. 
This factor controls minimum distance between two closest 
extrema. 

max,i : Maximum distance between two elite solutions. 
This factor controls the convergence rate. 

init,i : Initial value for i

Step 1 – Generating initial elite set 

Making initial population (the number of it is  ) and 
elite set. Among them, solutions are selected as members of 
an elite set. Elite set is determined by following rules. 
- Put current best solution to elite set and remove solutions 
inside the mutation range of the best solution. 
- Find best solution except the removed solutions, and repeat 
the previous step until members are found. 

Step 2 – Generating Children, Restricted Evolution 
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Making new children within mutation width of each 
elite set. This process is the same as (1+ ) ES. 

Step 3 – Mutation 

If the objective function for a child generation is improved 
compared to its parent, replace the parent (a member of elite 
set) with the child. After finishing the mutation, check if each 
elite solution is located in the mutation range of other elite 
solutions. If it is ‘true’ and its objective function has worse 
value than other solution, eliminate it (remove from elite set). 
The number of removed solution is denoted by .

Step 4 – Shaking 

( + ) solutions are randomly generated in the whole 
search space outside the mutation ranges of existing elite 
solutions ( : the number of shaking solutions). During the 
generation process, they should not invade other solutions’ 
mutation range, init,i . 

Step 5 – Annealing 

Form a new elite set. The removed solutions are 
replaced by the new solutions generated by shaking process 
(superior solutions are selected among ( + ) solutions). 
Existent elite solutions that are worse than remaining 
solutions are also replaced with new solutions. If an elite 
solution is improved within the mutation range, the mutation 
range is increased by dividing it by 0.85. If the elite solution 
is not improved, the mutation range is decreased by 
multiplying it by 0.85. Initial mutation range init,i is given to 
the newly generated solutions. 

Step 6 – Convergence Check 

Repeat Step 2 - Step 6, until all solutions are not improved 
any more. 

NUMERICAL TESTS AND RESULTS

The proposed algorithm was applied to the optimization 
of the mathematical function. Fig. 1 and Fig. 2 show two 
examples of the test functions and optimized results. From the 
figures, we can see that the results show very fast 
convergence speed and the proposed method is very efficient 
to find multiple peaks. Practical application of the method to 
electromagnetic optimization problems and comparison with 
other coventional methods will be shown in the full paper. 

CONCLUSION

In this paper, a novel algorithm for multimodal function 
optimization was proposed. The algorithm is based upon 
combination of the evolution strategy and the restricted 
evolution. The usefulness of the proposed method was 
verified by the application to various test functions. 
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         (a) test multimodal function                           (b) iteration 1 

                      (c) iteration 4                                     (d) iteration 15 

Fig. 1. Optimization result for a test function (  = 80,  = 5, = 10). 

             (a) 2-D Sinc function                                      (b) iteration 1 

(c) iteration 4                                     (d) iteration 15 

Fig. 2. Optimization result for 2-D Sinc function (  = 80,  = 5, = 10). 
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Abstract  This paper presents an optimum design technique, which 
is able to determine optimal geometric and electric variables of switched 
reluctance motor (SRM). SRM has essentially high torque ripple due to
its salient structure. In order to increase average torque and reduce
torque ripple causing noise and vibration, an optimization design
technique has been investigated variables by means of combining finite
element method (FEM) considering driving circuits and the progressive
quadratic response surface method (PQRSM).

Ⅰ. INTRODUCTION

The switched reluctance motor (SRM) has a lot of
advantages such as simple and rugged motor construction,
high reliability, and low cost [1]. However, SRM has some
problems that limit its applications because of its inherent
structure. One of the major problems is the torque ripple that
causes undesirable acoustic noise and high vibration. The
torque ripple depends essentially on geometric design
variables and electric design variables, which have been
adopted as two-dimensional design variables. As shown in
Fig. 1, the electric design variables are relative to turn-on
angle ( onθ ), turn-off angle ( offθ ). The geometric design

variables are relative to the salient pole shapes such as stator
pole arc ( sβ ), rotor pole arc ( rβ )[2].

Ⅱ. OPTIMIZATION ALGORITHMS AND FINITE ELEMENT METHOD

A. Optimization algorithm; Progressive quadratic RSM

Gradient-based nonlinear optimization methods like
conjugate gradient method (CGM) are inefficient in
applications where expensive function evaluations are
required, and in applications where objective and constraint
functions are noisy due to modeling and cumulative
numerical inaccuracy since gradient evaluation results cannot
be reliable. In this research an effective optimization
technique named PQRSM has been used to overcome
aforementioned difficulties. The PQRSM approximates
objective and constraint functions to quadratic functions
within the reasonable design space and sequentially optimizes 
the approximate optimization problems in the context of the
trust region model management strategy. The trust region
model management strategies adaptively restrict design

moves within trust regions, where the approximate function
produces information that agrees with the actual function
within an acceptable tolerance to error. Because PQRSM uses 
only function information of objective and constraints to
build approximate functions and does not use gradient
information it is a very useful method for problems where
gradient information cannot be obtained. The object function
and constraints are represented by (1) and (2)

Objective Function:
Maximize average torque (Tave) or 
Minimize torque ripple (Trip) (1)

Subject to:
Phase current; (Imax) ≤ 6(A),
Stator pole arc; sβ = 30°,

Rotor pole arc; 30° ≤ rβ < 60°,

Turn-on angle; 0° ≤ onθ ≤ 30°,

Turn-off angle; 30° ≤ offθ ≤ 45° (2)

B. Finite Element Method 

If the magnetic vector potential and current density have
only a z-axis component, the governing equation for SRM can 
be expressed in a magnetic vector potential A as follows:

( ) ( ) 0=+∂∂∂∂+∂∂∂∂ oJyAyxAx νν , (3)

where ν is the inverse of permeability, A is the magnetic
vector potential, and J0 is the input current density.

The electrical input equation of the voltage source is
expressed as

mmm EIRV += , (4)

Fig. 1. The initial model and equivalent self-inductance
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where V is the voltage source, Rm is the phase resistance,

mI is the phase current, and Em is the electromotive force
induced in the coil.

After applying the Gelerkin method in (3) and coupling
the voltage equation (4), system matrix equation is obtained
by using the time difference scheme as follows.
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The moving line technique is introduced to carry out the
dynamic analysis [3].

The force is calculated by the surface integral of the
Maxwell stress tensor on the line and the thrust is given by
following equation:
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, (6)

where, nx and ny are the unit normal direction vectors, w is 
the stack width, and Bx and By are the magnetic flux density.

C. Optimization procedure with Finite Element Method

Fig. 2 shows the automatic optimal design process. The
sβ , rβ , onθ , and offθ are adopted as a design variables to obtain 

the optimal results. To calculate the object functions, two-
dimensional time stepping FEM considering the driving
circuit is used.

Ⅲ. ANALYSIS RESULTS AND DISCUSSION

Various optimization algorithms are implemented in the
switched reluctance motor design. The effectiveness of the
PQRSM is verified in torque ripple and average torque as
shown Fig. 2.

Fig. 2 shows the total torque characteristics comparison
between the initial model and the optimal model. The torque
ripple of initial model is very large, which is almost 95.4(%).
Fig. 2 also shows that of the optimal model for minimizing
torque ripple. The torque ripple of optimal model is
drastically improved to 6.2(%). It can be known that the
average torque of optimal model is completely much higher
than that of initial model. In order to compare the PQRSM
with conventional RSM, we also suggest the results of the
conventional RSM will be released to in the final paper.

Ⅳ. CONCLUSION

This paper presented the results of this optimum design
for maximizing the average torque and minimizing torque
ripples specified according to SRM applications. In that work, 

the time stepping FEM has been effectively used in taking the 
drive circuit and the switching condition into account. In
order to identify the approaches on SRM, optimal design
variables and the performances were investigated in detail. A
trade-off characteristic between the average torque and the
torque ripple was also investigated. The optimal design
process proposed in this article may be also used effectively
for various electric machines.
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Fig. 3. Torque characteristic; optimum design vs. initial design

Fig. 2. The automatic optimization procedure
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Abstract�Based on the analysis of the properties of Alopex 
and chaotic optimization algorithm, a hybrid optimal method is 
proposed to solve nonlinear constraint optimization of 
underwater thruster motor design by the use of properties of 
ergodicity, randomicity and regularity of chaotic motion, which 
can enhance the local rate of convergence and improve the 
accuracy of solution. The mathematical model of thruster motor 
is set up and demonstrated by using numerical simulations under 
the condition of different starting, Computer-aided 
electromagnetic field calculation are employed to solve force and 
torque of underwater thruster.   

INTRODUCTION 

Underwater robots are applied mainly to oil and gas 
exploration and production, marine science( including 
environmental impact assessment), hydrographic 
survey, salvage and military field for general scientific 
experimentation and for data acquisition. Because 
neodymium-iron-boron (Nd-FeB) Permanent magnets 
have high-energy with suitable magnetic and physical 
properties for applications, Nd-Fe-B permanent 
magnet(PM) direct current (DC) motors have played an 
important role in high performance underwater thruster 
systems.  

In computational design optimization of underwater 
thruster motors, there are two tools that cooperate to 
obtain the optimal result. The fundamental tool of the 
scheme is the search tool. As every point in the search 
space represents a different design, the heuristic 
optimization algorithms transfer this particular design 
to the other tool of the optimization, the analysis tool, 
to get a performance measure. The analysis tool’s task 
is to solve the field equations for the submitted design 
and to return the relevant parameters back to the search 
tool. 

In recent years, increasing attention has been given 
to the development of novel heuristic optimization 
algorithms for a wide range of applications[1,2], the 
emergence of intellectual algorithms combined with 
advances in computer have facilitated the realization of 
high efficient PM motors. In this paper, a hybrid 
algorithm on the basis of Alopex and chaotic 
optimization is proposed for the underwater motor.  

HYBRID OPTIMIZATION

Alopex Algorithm 

The Alopex process[3] is a 
biologically-influenced computational paradigm that 
uses a stochastic procedure to find the optimum of 
nonlinear functions and uses the Boltzmann probability 
distribution function to generate probabilities of taking 
positive or negative steps away from its current 
position on the path toward the optimal solution. It is 
distinguished from the other methods by the following  
features:  

1). The procedure is iterative, with the variables that 
determine the cost function updated simultaneously by 
small increments during each iteration. Following the 
update, the new value of the cost function is computed. 

2). The change in the variable ix depends 
stochastically upon the change in the value of the cost 
function and the change in ix  over the preceding two 
iterations. 

3). All increments in parameter values are retained 
and carried over into the next iteration.

4). The process is guided by two parameters: the step 
size and the stochastic element called  the effective 
temperature.

5).Alopex contains additional algorithms which 
automatically adjust   step size and temperature as the 
run progresses.The equations satisfying the algorithm 
are�

)()1()( nnxnx iii ���� (1)

�

�

�

�
�

�

�

�

��

	



�

�

))(1(
)()(
npyprobabilitwith

npyprobabilitwithn
i

i
i

�

�

�   (2) 

where  
))(exp(1

1)(
Tn

np
i

i
���

�

�               (3) 

Chaotic Optimization

By the use of inherent special properties chaotic 
motion, the approximate optimal solution obtained 
from Alopex algorithm is transferred to the chaos 
optimization search to enhance the local rate of 
convergence and improve the accuracy of solution. 

The mathematical expression of the logistic mapping 
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of chaos optimization method is given in (4) . 
]1,0[,,2,1,0),1()( 01 ����

�

xnxrxxx nnn �   (4) 
where  r =the growth rate or fecundity  

0x =initial value 
The type of orbit depends on the growth rate 

parameter. When the growth rate equals 4, all orbits 
zoom to infinity.  
  After the initial steps of problems are implemented 
to search according to the requirements of Alopex, if 
the value of cost function keeps constant and 
unchanged, namely, then the local optimal point *

ix is
obtained. Chaotic number generator typically generate 
values between –1 and 1, if such chaotic variable as 

nio , is designated, the following formula can be used to 

generate new value '
ix

niiii oxx ,
*'

���                (5) 
where i� =adjusting coefficient 

*
ix =present optimal value 

and continue to search, set '
,)( nii xkx � ,and calculate 

the value of objective function )(kf .

if *)( fkf � , then )(* kff � , )(* kxx ii � ;

if *)( fkf � ,then abandon )(kxi

1�� kk   where k =iterative number 
FINITE ELEMENT METHOD

A 2-D FEM is perfect to a 3-D FEM because the 
overhang leakage flux of the motor is relatively 
significant while the corresponding computation 
program and time are much shorter. The x-y plane is 
selected as the cross section of the motor and the z-axis 
is along its axial direction. Thus, the nonlinear partial 
differential equation and boundary conditions for this 
motor are given by 
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Fig. 1. Distributions of magnetic field  
and flux density at load 

Fig.2  Thrust of underwater thruster  
at different voltage 

NUMERAL SIMULATION

Owing to starting directly at rated voltage 90V, the 
starting current is 28 times as high as the rated current, 
the peak current reaches 140A, thus, the motor is easy 
to be damaged as well as its gearing. How to choose 
starting reasonably is necessary. By setting up the 
numeral simulation model, the two starting methods are 
considered. 

Fig.3. Starting by decreasing      Fig.4.Starting under resisters 

Voltage                              in series 

CONCLUSION

In this paper a hybrid method for global 
minimization of function with continuous and discrete 
variables based on Alopex and chaotic algorithms has 
been presented. This optimization technology has been 
demonstrated on multimodal functions and applied to 
design of a series of underwater thruster motors. 
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An Optimization Design Method for Enhancing Efficiency of PM Motor by Using 
Voltage Driven Finite Element Method with Adjusting Supply Voltage 
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Abstract  In this paper, we propose the adjusting technique of the 
supply voltage of permanent magnet motor when carrying out the 
optimal design by finite element method and genetic algorithm. In 
calculation for the optimal design, it is difficult to keep a desirable 
balance of the supply voltage and the induced electromotive force. By 
using the proposed method, the supply voltage is appropriately decided 
to generate the rated torque. Owing to adopting this adjusting technique, 
the computation time of optimal design can be reduced and the solution 
can escape from local minima because the needless computation can be 
drastically reduced.  

I. INTRODUCTION

The total amount of electric power consumed by motors is 
more than 50% of the whole electric power in Japan. In recent 
years, from the point of view of energy saving, it is desired to 
improve the efficiency of motors. Furthermore a high-power 
and highly efficient motor is desired for electric vehicle (EV), 
electrical machinery and so on. 

Therefore it is necessary to improve properties (e.g. 
efficiency) of permanent magnet (PM) motors by applying an 
optimal design method. In the conventional optimimal design 
methods (e.g. [1]), the simplified model was dealt with in 
order to shorten calculation time; for example, the magnitude 
of the load current was decided or the waveform of the load 
current was assumed to be sinusoidal. In these methods it is 
impossible to obtain enough accurate results about the motor 
properties such as torque and loss and it is also impossible to 
consider the drive circuit of motor. Therefore, in this paper, 
the voltage driven finite element method is adopted to take 
into consideration the drive circuit of motor. However in the 
calculation for the optimal design, it is difficult to keep a 
desirable balance of the supply voltage and the induced 
electromotive force. In order to solve this problem, we 
propose the adjusting technique for supply voltage of 
permanent magnet motor when carrying out the optimal 
design for enhancing efficiency of PM motor. By using the 
proposal method, the supply voltage can be appropriately 
changed to generate the rated torque, so that the computation 
time of optimal design can be reduced even when to consider 
the drive circuit of motor. 

II. OPTIMAL DESIGN OF PM MOTOR

In optimal design of PM motor, it is desirable to take into 
account the electric circuit and the magnetic circuit of the PM 

motor at the same time. A useful method in such a case is to 
adopt the voltage driven finite element method [2][3]. 
However, this method needs to input a supply voltage to 
analyze the properties of motor, and the supply voltage to 
generate a rated torque can't be decided at design stage. 
Therefore a desirable balance of the supply voltage and the 
induced electromotive force can't be kept. If the supply 
voltage is too high, the generated torque is larger than the 
rated torque. From this reason, many useless computations for 
analyzing the properties of PM motor are performed in 
searching the global optimal solution. 

In order to solve this problem, we propose a method to 
determine the supply voltage of the PM motor at the optimal 
design stage. Figure 1 shows a flowchart of the proposed 
optimization process. In the proposal method, the supply 
voltage is adjusted to generate the rated torque. Since the 
torque is almost proportional to the supply voltage, the 

Adjusting of supply voltage

Satisfy the rated torque condition? 
No

Calculation of a motor properties
Voltage Driven FEM

Yes

Determine of design valuables

Stop

Start

Loop for optimization

Adjusting of supply voltage

Satisfy the rated torque condition? 
No

Calculation of a motor properties
Voltage Driven FEM

Yes

Determine of design valuables

Stop

Start

Loop for optimization

Fig. 1. Flowchart of the optimal design for PM motor 
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Fig. 2. Design variables for shape of SPMSM 
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adjustment of the supply voltage is possible by performing 
the calculation a few times. As a result, during the 
optimization process, it is able to compare the specifications 
of motor under the condition that the torque is rated. 

III. MODEL OF PM MOTOR TO BE  OPTIMIZED 

The model of Surface PM Synchronous Motor (SPMSM) 
for optimal design is shown in Fig.2. The number of design 
variables in this model is nine in all; five variables are shown 
in Fig. 2, the other three are the length of motor, the number 
of turns of winding and the diameter of wire. Furthermore the 
phase of a supply voltage is treated as a design variable, 
because it is impossible to specify an optimal torque angle 
beforehand. The rated torque in this model is 1.7[Nm] at 
2400[rpm]. The maximum permissible torque ripple is 5% of 
the rated torque. And the genetic algorithm was adopted as an 
optimization method.  

IV. RESULT

For verification of the proposed method, the SPMSM was 
optimized. Figure 3 shows that the plots of torque at every 
generation of GA are widely distributing in the case using the 
ordinary method. The white circles represent the effective 

calculation at the rated torque. While, the dots represent the 
useless calculation at the non-rated torque. The number of 
dots is mush lager than that of the circles, that is, the ordinary 
method spent much unnecessary computation time. It is 
because the matching of the supply voltage and the induced 
electromotive force could not be taken. The efficiency of the 
optimized SPMSM is 90.12% and the calculation time was 36 
hours (Pentium4, 2.0 GHz) in this case (see Table I). 

On the other hand, in the case of adjusting the supply 
voltage, the efficiency of the optimized SPMSM is 97.17% 
and the calculation time was 25 hours (see Table I). In Fig. 4, 
the plots of torque are concentrated on the line of the rated 
torque. By using the proposed method, the calculation time 
can be shortened because the time for needless numerical 
calculations can be reduced drastically. The magnetic flux 
density distribution of the optimized SPMSM is shown in 
Fig .5.  

As a result, the performance of the proposed method was 
better than that of the non-adjusted supply voltage method. 
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TABLE I. Characteristics of Optimized SPMSM 

Non-adjusting supply Adjusting supply 
Rated torque 1.72 [Nm] 1.70 [Nm] 
Output power 720 [W] 712 [W] 
Cupper loss 39.81 [W] 7.98 [W] 

Iron loss 39.20 [W] 12.75 [W] 
Torque ripple 0.17 [Nm] 0.11 [Nm] 
Load current 14.75 [A] 4.88 [A] 

Supply voltage 99 [V] 121 [V] 
Efficiency 90.12 [%] 97.17 [%] 

Calculation time 36 [h] 25 [h] 

1.5T

0.0T

1.5T

0.0T

Fig. 5.  Magnetic flux density distribution and flux lines in optimized 
SPMSM

Fig. 3. Distribution of torques at every generation of GA  
by using the non-proposed method 

Fig. 4. Distribution of torques at every generation of GA  
by using the proposed method 
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Abstract--An efficient full-wave numerical analysis for 
photonic crystal fibers is achieved by finite element method using 
hybrid edge/nodal elements with triangular shapes. Genetic 
algorithms are proposed with a view to optimize the geometrical 
parameters to get desired dispersion and polarization 
parameters of these fibers. 

Index Terms--Finite Element Methods, Genetic Algorithms, 
Photonic Crystal Fibers. 

I. INTRODUCTION 

PTICAL fibers and integrated optical waveguides are  
finding wide use in areas covering telecommunications, 

sensor technology, spectroscopy, and medicine. Photonic 
crystal fibers (PCFs) have attracted a lot of intension recently 
because of their unusual optical properties such as extra large 
chromatic dispersion, a wide range single mode operation [1-
2]. The complex nature of the cladding structure of the PCFs 
does not allow for the direct use of methods from traditional 
fiber theory. Especially for the novel PCF, operating by the 
photonic band gap (PBG) effect, the full vectorial nature of 
the electromagnetic waves has to be taken in account. 

A PCF usually consists of a hexagonal arrangement of air 
holes running down the length of a silica fiber surrounding a 
central core of solid silica or, in some cases, air. PCFs can 
exhibit a number of unique properties, including zero 
dispersion at visible wavelengths and low or high effective 
nonlinearity. By varying the size of the holes and their 
number and position, one can also design PCFs with carefully 
controlled dispersion and modal properties. 

In this paper, we present finite element magnetic and 
electric field models for determining the propagation modes 
in dielectric wave guiding structures. A combination of edge 
elements for the transverse field and nodal elements for the 
longitudinal field is used together with Perfect Match Layer 
(PML) to cope with the open domain. 

Genetic algorithms (GAs) are stochastic search and 
optimization techniques modeled on the mechanics of 
biological genetics and natural evolution. Based on FEM 
solver mentioned previously, we employ GAs to achieve 
accurate and optimal design of PCFs. 

II. FEM FORMULATION

To analyze electromagnetic wave propagation in an 
inhomogeneous wave guiding structures, the finite element 
method is employed in the framework of the Galerkin 
formulation of the weighted residual method to solve the 
vector Helmholtz equation: 

EE kµ r
r
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where )/( j��  and  and  represent the 
permittivity and conductivity, respectively, of dielectric 
materials. µk 00
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the field components the dependence from the spatial 
coordinate z of the form )( z�exp , with j��  as the 
complex propagation constant, and subdividing the electric 
field into its transverse ( Et ) and longitudinal ( E z )  parts, we 
get: 
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where Ee tt �  and  Ee zz � .
To apply the weighted residual procedure, two sets of basis 

functions and two corresponding sets of weighted functions 
have to be defined. Since the Galerkin formulation is adopted, 
each set of weighting functions is equal to the corresponding 
set of basis functions. We use the vectorial shape functions 

)(e
i  as the set of basis function to express the approximate 

e )(e
t  to the exact transverse part et of the electric field on the 

element ( e ), and we use the nodal shape functions e
i

)(  to 

express the approximate e e
z

)(  to the exact longitudinal 
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component ez  of the electric field on element ( e ). By using 
the finite element expansion of the unknown field on element 
( e ), we substitute these approximations into (3)(4) and 
annihilate the residue, we can get: 
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where the entries of the local matrices are given in [3]. After 
assembling all elements and zeroing the residuals, we can get 
the final generalized eigenvalue problems. Once the 
normalized operating frequency k0  is fixed, we can compute 
the propagation and attenuation constants of the characteristic 
modes of the guiding structures. 

III. FEM/GA  OPTIMIZATION DESIGN APPROACH 

Any genetic algorithm should consist of following basic 
operations:  a) construction of chromosomes, b) initial 
population, c) mating, d) crossover,  e) mutation, f) fitness 
evaluation}, and g) survival selection, etc. The detailed 
description of the efficient GA can be found in [4]. The 
optimization progress of the GA is illustrated by the flow 
chart in Fig. 1.  

Figure 1 The flow chart of the FEM/GA optimization algorithm. 

Unlike most GAs using binary coding and binary genetic 
operations, the proposed approach applies direct expression 
of original decimal parameters, i.e., a chromosome is just a 
real number or complex number vector associated with the 
model. For PCFs, the structures of a chromosome for the fiber 
design optimization are just the number, location, and the size 
of the holes. The mating scheme plays a very important role 
on the convergence and robustness of a GA. There are various 
mating schemes. After extensive comparative study, we have 
found that the Emperor-Selective (EMS) scheme is more 
effective than many other popular ones such as Roulette 
Wheel, Tournament Selection, Adjacent-Fitness-Pairing, etc. 
EMS mating scheme allows the fittest individual to procreate 
freely with virtually the rest of the population, resulting in a 
greater diversity and faster convergence.         

IV. PRELIMINARY RESULTS AND CONCLUSION

Here we specifically analyzed this kind of photonic crystal 
fibers, which have several rings of air holes around the core.  
In Fig. 2., the geometry of PCFs with a ring and two rings of 
six airs holes is given. In Fig. 3 the calculated propagation 
constant verse working frequency band is plotted. Where the 
dotted line, is just the main propagation mode of common 
circular air waveguide. The solid line is when there are 
several rings of air holes around the core, no matter how 
many rings around the core; there is almost no any difference. 
Because that the most part of the transmission power are 
confined in the area inside the first ring. The effect of holes to 
the propagation properties will be presented in more details at 
the conference and the full paper.  

R
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Figure 2 PCFs with a ring and two rings of air holes 

Figure 3 Frequency VS Propagation Constant 

Based on this efficient analysis method, we can carefully 
study the unusual optical properties of PCFs. We can 
optimize the design of the geometry of PCFs by using 
FEM/GA optimizer. More results for optimized design will be 
presented at the conference and in the extended paper. 
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Abstract-- In magnetic fluid dynamics appears the
problem of reconstruction of free boundary between conducting
fluids, e.g. in aluminum electrolysis cells. We have investigated
how the interface between two fluids of different conductivity of
a highly simplified model of an aluminum electrolysis cell could
be reconstructed by means of external magnetic field
measurements using simple genetic algorithm.

INTRODUCTION

There are a variety of problems in material processing
where it would be useful to know the time-dependent
distribution of the electrical conductivity of a single
fluid or a multiphase flow. For instance, the
knowledge of the position of the interface between
highly conducting molten aluminum and poorly
conducting liquid cryolite is important to prevent
unwelcome instabilities in aluminum reduction cells
[1].

The purpose of the present work is to demonstrate
that concepts of Magnetic Field Tomography (MFT)
which have been successfully applied to a variety of
problems in biomagnetism can be used in order to
detect interfaces between current carrying fluids of
different electrical conductivity. We demonstrates that
the external magnetic field generated by the electrical
current flowing through a highly simplified model of
an aluminum reduction cell provides sufficient
information to reconstruct the unknown interface
shape.

HIGHLY SIMPLIFIED CELL MODEL

If we consider typical figures of aluminum
electrolysis cells it must be noticed that the cross
section has a length of about L = 8m, whereas the
interface displacement is very small compared to the
lateral extent of the system. Industrial practice shows
that already such small interface displacement can
perturb significantly the operation of the cell [2].
Consequently, our physical model is characterized by
� � � � � � � � � � � � 	 
 � �  � �

The considered problem is shown in Fig. 1. Two
fluids with different electrical conductivity � 1 (upper)
and � 2 (lower) are situated in a long cylinder with the

radius R. The cylinder walls are nonconducting.
Along the length axis of the cylinder a homogeneous
electrical current density J0 is applied.

Fig. 1. Aluminum electrolysis cell model with a non-axisymmetric
interface and FEM model used in forward calculations.

The complete interface perturbation can be found
solving the Euler equation and the mass conservation
law as

( ) ( )∑∑
=

α

−=
η=αη

N

n

jm
mnmmn

M

Mm

erkJr
1

, (1)

The value n is called the radial mode number and
the value m the azimuthal mode number. Although the
quantity of modes is usually unlimited, the highest
modes have the smallest amplitudes and can be
neglected.

The validity of the above interface representation is
limited by the amplitude of the interface oscillations.
We consider only small interface oscillations because
the larger interface oscillations lead to instabilities due
to drop formation [2].

MAGNETIC FIELD MODELING

If the interface between fluids is flat, the current
density J is homogeneous everywhere. As soon as the
interface deviates from its flat shape due to interfacial
waves or an external forcing, the current density J will
become inhomogeneous near the interface (Fig. 2).
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Fig. 2. Distribution of current density 0.5 mm under the interface.

The inhomogeneity of J can be represented by the
perturbation current density j. If the perturbation of
the fluid interface is non-axisymmetric, it leads to a
perturbation of the magnetic field outside the cylinder.
This fact is used for the interface reconstructions.

To model the magnetic field we have calculated
first the current density distribution in the cylinder
using FEM method or the semi-analytical approach
described in [3, 4]. Then using the Biot-Savart law:

( ) ( )
3 ´

4 V

dV
µ
π

× −
=

−∫
j r r´

b r
r r´

(2)

we have calculated the magnetic flux density in the
sensors area. Fig. 3 shows the distribution of magnetic
flux density components (Br, Bz) on the evolved
cylindrical surface of the radius 10 mm greater than
the cell with fluids (R=25 mm)

Fig. 3. Distribution of magnetic flux density (Br - top, Bz – down,
in [nT]) produced by mode 22.

INTERFACE RECONSTRUCTION USING SIMPLE GENETIC
ALGORITHM

To reconstruct the interface between two fluids we
have applied a simple genetic algorithm (GA) [5]. As
an example we have reconstructed the shape of the
pure mode � 22. We have restricted the search space to
the 12 parameters consisting of amplitudes of the
interface perturbation given by (1), where m=1…4
and n=1…3. The simulated magnetic field has been
calculated around cylinder at the radius 35 mm in
16x7 equally distributed positions. As an objective
function we have used a sum of squared differences
of Br and Bz produced by the actual individual and the
original field in the sensors positions. The perfect
result of reconstruction is shown in Fig. 2. In that
case, the population size was equal 60, the mutation
probability 0.01 and the crossover one point
probability 0.6.

Fig. 4. Shape of reconstructed interface (mode 22).

CONCLUSIONS

We have shown that it is possible to reconstruct the
shape of the interface between two fluids on the basis
of magnetic flux density measurements using simple
GA. In the full paper, we would like to present the
reconstruction of hybrid modes and the influence of
the noise on the quality of reconstruction.
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Abstract – Parallel genetic algorithms (PGAs) have been 
developed to reduce the large execution times that are associated 
simple genetic algorithms (SGAs). They can also be used to solve 
larger problems and to find better solutions in single processor. In 
this paper, we use a particular kind of parallel GA, called coarse-
grain GA as an optimization algorithm. To verify its validity, this 
method is applied to some traditional mathematical problems. The 
optimal design of a brushless DC motor using PGA is presented. 

INTRODUCTION 

In the area of design of traction motor for electric wheel 
chair, the weight and the efficiency of the traction motor is very 
important because of the limitation of electric power from 
batteries. The high starting torque for good acceleration and 
low manufacturing cost are also required. Therefore, many 
aspects have to be considered in designing traction motor for 
electric wheel chair. To meet these requirements at once the 
optimal design is needed than the experience of the motor 
designer. 

Genetic algorithms (GAs) are a promising search heuristic 
for finding near-optimal solutions in large space. GA’s are now 
widely recognized as an effective search paradigm in artificial 
intelligence, image processing, VLSI circuit layout, solving 
non-linear equations, optimization of electric machine design, 
and many other areas. But in case of the optimization problems 
that have many design variables, such as the design of 
Brushless DC motor, the conventional GA’s fall into a trap of 
local minima with high probability. This problem is called 
premature convergence problem. To overcome this problem, 
the parallel genetic algorithm is introduced in this paper. 
Originally parallel genetic algorithms (PGAs) using multiple 
processors have been proposed to reduce the large amount of 
computation time associated with simple genetic algorithms 
(SGAs). But they can also be used to solve larger problems and 
to find better solutions in single processor.  

In this paper, we use a particular kind of parallel GA, called 
coarse-grain GA’s, which aid in global search and retard 
premature convergence [1]. Coarse-grain GA’s maintain 
multiple and independent populations with occasional 
interchange of solutions between these populations. And new 

techniques for genetic operator are introduced to advance the 
characteristic of parallel GA. 

PARALLEL GENETIC ALGORITHM 

To avoid premature convergence problem in GA many 
researches have been proposed. Of course, a parallel GA may 
be seen as a particularly natural and efficient version of such 
researches. There are three main types of parallel GA: (1) 
global single-population master slave GA, (2) single 
population fine-grained, and (3) multiple-population coarse-
grained GA. A multi-population parallel GA called coarse-
grained GA is very popular. It uses several subpopulations 
which evolve independently from each other for a certain 
number of generation and exchanges individual occasionally 
[2]. Fig. 1 is the structure of coarse-grained GA. To advance 
the characteristic of parallel GA, we introduce real-coded 
algorithm, scaling window and elitism. 

NUMERICAL EEXAMPLES 

Two test functions are used to compare the performance of  

Start
gen =1

INITIALIZATION

subpopulation1

SGA

subpopulation2

SGA

subpopulation3

SGA

gen = generation? END

NO

YES

MIGRATIONYES

NO

migration?

Fig. 1. Structure of coarse-grained GA 
simple and parallel GA. The first is a two-dimensional function 
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and the second is four-dimensional function. Both of them have 
a minimum value at x=1. The functions are specified by the 
following equations: 
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We run each algorithm 50 times on test functions and 
average the searched result. The parallel GA has three sub-
populations. So the size of sub-populations for PGA is one-
third of SGA. The iteration of generation is 2000. Table I 
summarize all results. Fig. 2 is the comparison of convergence 
to F4 test function at two algorithms. As shown Table I and 
Fig. 2, PGA works better than SGA especially in four-
dimensional function. PGA found the lower minimum value of 
test function and converged it faster than SGA for the high 
dimensional problem. 

TABLE I. PERFORMANCE COMPARISON  

 SGA PGA 

F2 
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Fig. 2. Convergence comparison for F4 test function

OPTIMIZATION OF BLDC MOTOR DESIGN 

Now, the proposed parallel method is applied to the optimal 
design of BLDC motor for electric wheel chair. The first step 
of optimization is a design synthesis of BLDC motor. The 
synthesis is a procedure for producing the motor on the basis of 
a set of design variables, other design data, and the motor 
specification. We select the five independent design variables 

consisting of one maximum flux density for the stator and rotor 
punching and four geometric variables. Four geometric 
variables are the stator outside radius, motor axial length, rotor 
outside radius and the depth of rotor magnet. Air gap length 
and stator slot opening are dictated by mechanical 
considerations.  

The designer of traction motor for electric wheel chair 
should try to design lower weight motor in order to improve 
driving performance, running distance and low material cost. 
From the above result, the weight of a motor is selected for the 
objective function of optimal design. And the other 
characteristics such as the efficiency of motor are selected as a 
constraint of optimization. The 210[w], 4-pole, three-phase 
BLDC motor for electric wheel chair is designed as a sample 
design. The rated speed is 2,500[rpm] and battery voltage is 
24[V]. Fig. 3 is the convergence characteristics of motor 
weight. Through the optimal design, we reduce the weight of 
motor by 23[%]. It is being manufactured for test. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

W
ei
g
ht

o
f
M
o
to
r[
kg
]

generation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

W
ei
g
ht

o
f
M
o
to
r[
kg
]

generation
Fig. 3. Convergence characteristics of motor weight 

CONCLUSION 

To overcome the premature convergence problem, an 
advanced parallel GA is introduced in this paper. We showed 
that parallel GA works better than simple GA especially in 
high dimensional problem which fall into a trap of local 
minima with high probability. Through the application of 
parallel GA to optimization of BLDC motor design for electric 
wheel chair, we designed lighter motor. 
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Abstract�The fringing field of the write element of the merged 
magnetoresistive (MR) head is minimized while restraining its deviation 
due to uncontrollable factors such as variability in material properties. 
Finite Element Method (FEM) is applied in combination with Response 
Surface Methodology to search for the robust solution. The influence of 
the geometrical parameters of MR head on the fringing field and its 
deviation is investigated. 

INTRODUCTION

With the demand for increased recording density of Hard 
Disk Drive, it is necessary to design high performance MR 
head with narrow track width and minimum side-fringing. A 
merged MR head with trimmed shared pole can reduce side-
fringing field and therefore improve off-track performance 
while keeping well-defined narrow track width [1][2]. 

It is obviously inadequate to search for an optimal design by 
conventional optimization technique if the design is very 
sensitive to perturbations of its parameters. Compared to 
traditional optimization techniques, the robust design provides 
a solution to achieve not only the optimal target but also 
reduce the its sensitivity to noise factors, which may be caused 
by the variability due to manufacturing or environmental 
conditions [3]. Response Surface Methodology (RSM) [4] is a 
set of statistical methods and can be used for conducting 
experiments, analyzing experiments’ results and searching 
optimal solution in engineering design. 

In the present work, Finite Element Method (FEM) is 
utilized to simulate the side-fringing field of MR head. To 
achieve robustness of MR head, RSM is introduced and 
applied together with the concept of Orthogonal Array (OA) 
for conducting noise factor settings [5], and Signal-to-Noise 
(S/N) [5] to evaluate the performance and its deviation.  

DESCRIPTION OF DESIGN PROBLEM

A part of the write element of the MR head with trimmed 
shared pole is shown in Fig. 1. The thickness of trimmed pole 
is 2�m, the width of trimmed pole is 16�m, the inner throat 
height of shared pole is 0.25�m, P2W and P3W are 0.27�m, 
the height of P2 is 2.5�m and the length of air-gap is 0.1�m. 
In the present work, the dimensions of trimmed shared pole, 
P2, and P3 are investigated as the design parameters. The 
objective of this study is to reduce the side-fringing field in 
order to obtain narrower track width. 

Selection of quality characteristic, and design parameters  

In this study, the inner trimmed height of shared pole, h, the 
trimmed depth of shared pole, w, the depth of P2, p2d and the 

height of P3, p3h, are selected as design parameters (Control 
factors). The B-H properties of soft material for the pole and 
the width of P2, p2w, are the noise factors due to fabrication 
variability. The objective is to reduce the side-fringing field; 
therefore the displacement of certain point, in which the 
field intensity is less than one time of the medium 
coervicity, is considered as the quality characteristic 
(response). 

Fig. 1 a partial design of MR head with trimmed shared pole 

DESIGN METHOD AND ANALYSIS

Response Surface Methodology (RSM) 

At this stage, RSM is applied to conduct design of 
experiments, analyze the results and search for the robust 
solution. It is designed to quantify the relationship between 
the values of some measurable response values and those of 
a set of experimental factors presumed to affect the 
response, and find the values of the factors that produce the 
best value of the response. A polynomial presentation of a 
response surface could be written as a first-degree model or 
a second degree one, even higher. A second-degree model 
presented in this paper is described as Equ. 1. 

By linear regression, the coefficients in the above 
equation can be obtained and therefore the response is 
quantified with the values of experimental factors. The 
solution of factors, which will produce the best value of the 
response, can be calculated. 

Design of Experiments and Simulation 

The central composite design (CCD) is applied to 
construct the second order polynomial model. In the study 
the nominal values of h, w, p2d, and p3h are 0.25�m, 
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3.5�m, 0.5�m, and 2.5�m respectively. The values for one 
unit of coded factor level are also resumed to 0.03�m, 0.2�m, 
0.05�m, and 0.2�m respectively. The inner array of design of 
experiments is shown as Table 1. For noise factors, the BH 
properties with 5% tolerance and p2w with 0.2�m tolerance, 
the outer array of design of experiments is conducted as Table 
2.

TABLE I. INNER ARRAY (Control Factors Settings) 
Run h w p2d p3h Run h w p2d p3h 
1 0.22 3.3 0.45 2.3 14 0.28 3.7 0.45 2.7 
2 0.22 3.3 0.45 2.7 15 0.28 3.7 0.55 2.3 
3 0.22 3.3 0.55 2.3 16 0.28 3.7 0.55 2.7 
4 0.22 3.3 0.55 2.7 17 0.19 3.5 0.5 2.5 
5 0.22 3.7 0.45 2.3 18 0.31 3.5 0.5 2.5 
6 0.22 3.7 0.45 2.7 19 0.25 3.1 0.5 2.5 
7 0.22 3.7 0.55 2.3 20 0.25 3.9 0.5 2.5 
8 0.22 3.7 0.55 2.7 21 0.25 3.5 0.4 2.5 
9 0.28 3.3 0.45 2.3 22 0.25 3.5 0.6 2.5 
10 0.28 3.3 0.45 2.7 23 0.25 3.5 0.5 2.1 
11 0.28 3.3 0.55 2.3 24 0.25 3.5 0.5 2.9 
12 0.28 3.3 0.55 2.7 25 0.25 3.5 0.5 2.5 
13 0.28 3.7 0.45 2.3      

TABLE II. OUTER ARRAY (Noise Factors Settings) 
Run 1 2 3 4 

Material 95% 95% 105% 105% 
P2w 0.25 0.29 0.25 0.29 

Commercial FEA software ANSOFT is used to evaluate 
product performance, which is the side-fringing field of MR 
head. Fig. 2 shows the typical field intensity along the track 
direction. It should be noted that the point with 0.05�m
displacement X is the center of gap and track. 

Fig. 2 A Sample of Side-Fringing Field intensity Curve (H unit: A/m, X: �m)

Linear Regression Analysis 

Applying the results of simulations, the second-order 

regression model is fitted as Equ. 2.  

It is noted that y presents the displacement X, x1
represents h, x2 represents w, x3 represents p2d and x4

represents p3h. The stationary point at h=0.234�m, 

w=3.566�m, p2d=0.489�m and p3h=2.508�m can be 
searched easily. The prediction displacement X, in which 
field intensity is much less than one time of medium 
coervicity, is 0.003�m. In other words, the half of track 
width is only 0.094�m. Fig. 3 shows fitting response surface 
corresponding to h, and w. 

The analysis of variance is carried out in order to check 
the adequacy of fitting in the design region. The result of 
analysis is shown in Table III. 

TABLE III. ANALYSIS OF VARIANCE (ANOVA) 
Source DF SS MS F R2 RA

2

Regression 14 13.249 0.946 1.021 0.588 0.0121 
Residual 10 9.267 0.927    

Total 24 22.516 0.938    

CONCLUSION 

In the design study, the side-fringing field has been 
markedly reduced while keeping the response more 
insensitive to the variability of design parameters. 
Compared to the original design, which is of 2.084�m track 
width and 0.002748 standard deviation, the robust solution 
provides an optimal setting of the design parameters for 
high product quality. It is shown that the robust design 
based combined with FEM technique RSM can be used as 
an efficient and effective tool in engineering design. 

Fig. 3 Fitting Surface Model
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Abstract – Aiming at time reduction and high efficiency in 
computation, a set of simple formulae characterizing a giant 
magnetostrictive material is proposed. It can represent non-linearity of 
the magnetic properties with respect to both the magnetic field intensity 
and the mechanical stress, using easy-to-handle function form with some 
adjustable parameters given by from experimental data resources. 

INTRODUCTION

The properties of giant magnetostrictive materials 
(abbreviated by GMM in followings) are known to have 
non-linearity with respect to both the magnetic field and the 
mechanical stress. The linearized modeling of GMM presents 
a high computational efficiency, but is insufficient to represent 
the entire properties of GMM [1]. A powerful model 
representing the non-linearity of GMM has been presented by 
Benbouzid, et al, [2]. It directly refers to the state of GMM by 
means of the spline interpolation, as a point on the 
mathematical surface transformed from static experimental 
data; therefore it performs accurate but needs memory space 
for the resources of the complicated surface and more 
computational processes for the interpolation. As the 
alternative modeling approach, this paper proposes 
2-dimensional approximate formulae, which need no data 
resources during the computation. 

PREPROCESS ARRANGEMENT FOR MEASURED DATA

Measured properties of GMM are simply visualized by 
anhysteresic curves San(H, T) for the relation between the 
strain S and magnetic field intensity H, and Ban(H, T) between 
the magnetic flux density B and H, which are transformed 

from the measured hysteresic loops by calculating the 
averages of the upper and lower branches. The examples of 
anhysteresic curves are depicted in Fig. 1-2, where the 
parameters used in the approximate formulae are 
superimposed. As observed in those figures, the corves San(H,
T) and Ban(H, T) are smooth, symmetric and saturable. 
Exponent-base functions, such as Sigmoid and Gaussian, are 
applicable for the representation of those features. 

STRAIN REPRESENTATION

Arranging Gaussian function, the approximate formula for 
strain representation is proposed as; 
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where, the first term represents the fundamental curve 
assuming perfect saturation, the second the gradual increment 
at saturation region, and the last the drop of the bottom due to 
the compressive stress. In case of T = 0 or = Tmax, the circled 
parameters in Fig. 1 are directly detected from San(H, T), but 
others need some graphical procedures for estimation. At first, 
SH(0) is determined as the intercept of the tangent line I at the 
point P1=(Hmax, San(Hmax,0)), then the curve II corresponding 
to the second term in (1) is applied so that it could start from 
P2=(0, SH(0)) and could have a common tangent line with 
San(H, 0) at P1. The shape of curve II depends on both values 
of Hws and Ssat, but they have little affect on the shape between 
P1 and P2. Therefore any couple of Hws and Ssat is usable as 
long as the condition of the common tangent is fulfilled. Then, 
the curve II is determined passing through some adjusting 
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trials. If once the curve II is fixed, the curve III can be drawn 
by shifting the curve II to P3=(0, Sd(Tmax)). SH(Tmax) is 
estimated as the height of the perfect saturable component 
corresponding to the first term in (1). For this procedure, an 
appropriate extension for San(H, Tmax) such as the curve IV is 
necessary because the saturation of San(H, Tmax) usually cannot 
be found below Hmax in Fig. 1. 

In the intermediate state between at T = 0 and T = Tmax,, the 
parameters determining the shape of the curve are unknown. It 
would be natural to assume that the shape of curve changes 
smoothly against the change of T. And then, the following 
functional expressions are introduced; 
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where, as is a adjustable constant, as > 1, and 
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Equation (4) expresses the nature of GMM that the maximum 
magnetostriction appears under an appropriate pre-stress; 
therefore, a convex second order function that has the peek 
SHmax at a certain stress below Tmax is applied. SHmax and as
cannot be given directly by Fig.1, but roughly estimated by 
rearranging the measured data to San(Hmax, T)-San(0, T) vs. T.
The exponents a and b works as distribution weight factors, 
which are adjusted by comparison with the measured data. 

MAGNETIC FLUX DENSITY REPRESENTATION

Ban(H, 0) can be expressed by the combination of Sigmoid 
and the first-order functions, and Ban(H, Tmax) can be estimated 
as nearly linear. “Saturation-line” and “base-line” are herein 
defined; the former is the tangent line for the wholly saturated 
curve at T = 0, the latter parallel to that and passing through 
the origin. The approximate formula for the magnetic flux 
density representation is proposed as; 
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where, Ba is the inclination of the base-line. All the parameters 
except HBw(T) are given by the measured data, as shown in Fig. 
2. HBw(0) with respect to 0.46Bw can be read from Fig.2, 
whereas HBw(Tmax) is unknown. A very large value compared 
with HBw(0) should be applied so that the curve B(H, Tmax)
could approach to Ban(H, Tmax).

Intermediate state can be expressed by similar technique for 
the strain representation. Then, the following function is 
introduced; 

� � � � � �� � � � � �00
maxmax Bw

c
T

T
BwBwBwBw HHTHTHH �����   (6) 

where, exponents c is an adjustable parameter. 

EVALUATION OF THE APPROXIMATE FORMULAE

Fig. 3 and 4 show the comparison of the approximate 
formulae (right; solid) with measured data (left; broken), by 
each half curve. It can be said that the proposed formulae fit 
well to the measured data except for stresses below � 3MPa 
(e.g. T=0, 2.57MPa) in the strain representation. However, 
these errors can be ignorable in case of modeling for an 
actuator application operated under higher stress than those. 

CONCLUSIONS

A set of approximate formulae for the strain and magnetic 
flux density representations of GMM has been proposed. It 
expresses the non-linear properties of GMM with good 
agreement with the measured data. 
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Fig.3 Approximate formula for strain representation S(H, T) compared 
with the measured data San(H, T)
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Taking Account of E-J Power Low Characteristics
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Abstract  A method for analyzing the current distribution in high-Tc

superconducting power cable is examined by the aid of novel use of anisotropic 
conductivity and 3-D finite element method in consideration of E-J power low 
characteristics. The detailed current distribution in the cable is illustrated and the 
shielding effect of HTS shield is also examined. 

INTRODUCTION

Controlling the current distribution in each layer of a 
multi-layer superconducting cable uniformly is important in order 
to realize a compact and large capacity high-Tc super conducting 
power cable [1]. The phenomenon of current imbalance should be 
exactly investigated by analyzing, for example, the effect of twist 
pitch etc. on flux and current distribution to design efficient cable. 
However, the accurate analysis of current distribution of a HTS 
cable taking account of the E-J characteristic is seldom reported. 
This is mainly because the 3-D analysis of current distribution in 
multi-layer superconducting cable consisting of superconducting 
tapes spirally wound of a former is complex. 

In this paper, 3-D finite element analysis taking account of the 
non linear E-J power law characteristic is carried out by modeling 
such spirally wound superconducting tapes as conductors having an 
anisotropic conductivity [2][3]. 

. METHOD OF ANALYSIS

A. Modeling of Cable Structure 
A HTS cable should consist of multi-layered conductors to 

increase its current loading. The structure of HTS cable is shown in 
Fig.1. When there are many layers of superconductor in a 
superconducting cable, it is difficult to analyze magnetic fields in 
the cable using the conventional 3-D finite element method, 
because the number of finite elements increases greatly. If the cable 
is treated as a macroscopic one having anisotropic conductivity, as 
shown in Fig.2, the calculation can be carried out within the 
acceptable computer storage and CPU time. Moreover, since it is 
not necessary generate a mesh again even if the twist pitch is 
changed, it is useful to examine the optimal twist pitch. 

The conductivity // parallel to the superconducting tape is 
equal to infinity. The conductivity  perpendicular to the 
superconducting tape can be given by [2] 

m1
1  (1) 

where m is the conductivity of the silver sheath.  is the volume 
fraction of superconductor in the HTS layer. The conductivity m of 
silver sheath is 3.45 108 S/m (at 77K) and the volume fraction  is 
assumed as equal to 0.6. Then,  is 1.38 109 S/m according to 
Eq.(1). 

The conductivity of the anisotropic conductor is a tensor, of 
which the off-diagonal elements are all zero. The current density Ju,
Jv and Jw in u-, v- and w-directions defined along the 
superconducting tape as shown in Fig.3 can be written using each 
component Eu, Ev and Ew of electric field strength E and  and 
as follows [3]: 
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The relationship between Jx, Jy and Jz and Ex, Ey and Ez can be obtained as 
follows [2]: 

z

y

x

z

y

x

E
E
E

KK
J
J
J

1

//

r

00
00
00

PPLP insulation layer

Superconducting shielding  layer

Former

Superconducting layer
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z

y

x

E
E
E

ihg

fed

cba

(3)

[K] is the transformation matrix[3]. 
The superconducting cable is treated as a conductor having large 

conductivity. The magnetic field is analyzed using the 3-D edge-based 
hexahedral finite element method(A- method, A: magnetic vector potential, 
: electric scalar potential). 

B. Conductivity of Superconductor to be used in Numerical 
Analysis

The infinite conductivity sc ( //) of the supercondcutor cannot 
be treated in the numerical calculation. One needs to determine a 
suitable value for the conductivity // ( sc) in Eq.(2) for the 
numerical calculation. The superconducting property is given by the 
E-J characteristic (Fig.4) represented with a power law 

n

J
JEE

c
c  (4) 

where Jc is a critical current density and Ec is equal to 1 10-4 V/m. 
Then, the equivalent conductivity of superconductor sc is derived 
as, 

n
n

J
E
J

E
J 1

c

c
sc  (5) 

sc is determined iteratively at each time step until the final 
result is obtained. The maximum value of sc is limited to 1 1011

S/m to enhance the efficiency of calculation. 

C. Boundary Condition
Fig.5 shows the boundary condition. The Dirichlet boundary 

condition (A=0) is given on the boundary  of air region. Let us 
assume that a point p on the boundary  of the HTS conductor 
corresponds to a point q on the boundary . The periodic boundary 
condition is given at the points p and q, by assuming that the vector 
potential Ap at the point p is equal to Aq at the point q (Ap=Aq). The 
unknown equi-potential condition of electric scalar potential 1 is 
given on the boundary  of the HTS conductor, and the unknown 
equi-potential 2 is given on the boundary .

. RESULTS AND DISCUSSION

The flux and current distribution in the HTS cable model of 
1-layer conductor shown in Fig.5 are analyzed. The thickness of the 
conductor is 0.3mm. The twist pitch is equal to 300mm. n value is 
assumed to be 16, and Jc is 2.0 107. The frequency of the current is 
50Hz. 

Fig.5 shows an example of flux and current distribution at t = 
90deg. The deviation of current is remarkable. 

This work has been carried out as a part of Super-ACE (R&D 
of fundamental technologies for superconducting AC power 

equipment) project of METI, being consigned by NEDO. 
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Time Domain Analysis of Shielding Current Density in HTS

by Element-Free Galerkin Method

Atsushi Kamitani, Ayumu Saitoh
Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, JAPAN

kamitani@yz.yamagata-u.ac.jp

Soichiro Ikuno
School of Engineering, Tokyo University of Technology, Hachioji, Tokyo 192-8580, JAPAN

AbstractThe numerical code for calculating the shielding current den-
sity in the high-Tc superconductor is developed by using the element-free
Galerkin method. The behavior of the shielding current density is expressed
by the integro-differential equations. In order to solve the initial-boundary-
value problem of the equations, the equivalent weak form is derived. Since
the form satisfies the essential boundary conditions automatically, it is
discretized easily. In the numerical code, the resulting nonlinear system is
solved at each time step. By means of the code, the spectral analysis of the
magnetic field is performed.

INTRODUCTION

Among the applications of the high-Tc superconductor (HTS),

the magnetic levitation and the magnetic shielding have recently

become promising. Since the quantitative evaluation of the shield-

ing current density is indispensable for the design of the magnetic

levitation system and the magnetic shielding apparatus, various

methods [1-3] have been proposed for calculating the shielding
current density. However, in all of the methods, the finite element

method (FEM) has been employed as the discretization method.

In spite of its quite convenience, the FEM has been plagued

by two inherent difficulties: the time consumption of the element

generation and the limited smoothness of the approximate solu-
tion. In order to resolve the above difficulties, several meshless

approaches [4,5] have been proposed.

The purpose of this study is to develop the numerical code for

analyzing the time evolution of the shielding current density by

using the element-free Galerkin (EFG) method and to perform the
spectral analysis of the magnetic field by use of the code.

GOVERNING EQUATIONS

Let us first assume that the HTS plate has the same cross sec-

tion through the thickness direction and that it is exposed to the ac

magnetic flux density  . Here, ez denotes a unit

vector along the z-axis. We further assume the multiple-thin-layer
approximation [1] to simulate an anisotropy in the critical current

density of the HTS. In the following, the shielding current density

and the electric field in the pth layer are denoted by j
p
 and E

p
,

respectively, and Ω is the cross section of the HTS plate.

Under the above assumptions, there exists a scalar function

Sp(x, t) such that  and the behavior of jp is gov-
erned by the following integro-differential equations [1,2]:

where 2ε and M are the layer thickness and the total layer number,

respectively, and the explicit form of the function Q
pq

(r) is given

in [2]. Throughout this study, x and x′ denote vectors in the xy

plane. In addition, the flux-flow and flux-creep model [1-3] is

adopted for the J-E constitutive relation, and both the flow resis-
tivity ρ

f
 and the critical current density j

C
 are assumed as con-

stants. By solving (1) with the initial and the boundary conditions,

we can investigate the time evolution of .

NUMERICAL METHOD

By means of the backward Euler method, (1) can be easily

discretized with respect to time. The boundary-value problem of
the resulting equations is equivalent to the following weak form:

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



where the superscript n indicates the value at time t = tn (≡ n∆t),

e.g., . In addition, the Lagrange multiplier λp(s)

is a function of an arclength s along ∂Ω, and both δS
p
 and δλ

p

denote test functions. Note that the essential boundary conditions

are incorporated into (2) through Lagrange multipliers. In this

sense, the test and the trial functions can be selected arbitrarily.
By using the shape functions of the moving least-squares ap-

proximation [4,5], the weak form (2) can be discretized as

where the nodal vectors, s, e(s) and λλλλλ, correspond to the scalar

function , the electric field  and the Lagrange multiplier λ
p
,

respectively, and the matrices, W and B, are calculated from the

shape functions and the function Qpq(r). In addition, u is a nodal
vector irrelevant to s. As is apparent from (3), s can be determined

by solving the nonlinear system (3). Thus, the initial-boundary-

value problem of (1) is reduced to the problem in which the non-

linear system (3) is solved at each time step.

NUMERICAL RESULTS

The 3D simulation code for solving the initial-boundary-value

problem of (1) has been developed by means of the method ex-

plained above. For simplicity, the HTS plate is assumed to have a

square cross section of side length 2a, and its thickness is denoted

by D. Throughout this study, the geometrical and the physical pa-

rameters are fixed as follows: a = 20 mm, D = 2 mm, M = 6, f
= 100 Hz,  ρ

f
 = 7×10−9 Ω⋅m and j

C
 = 1.3×107 A/m2. A typical

distribution of the shielding current density is shown in Fig. 1. We

see from this figure that the smoother distribution is obtained by

using the EFG method. This is mainly because the shape func-

tions are continuously differentiable in the EFG method.

Once the spatial distribution of the shielding current density is

given, the magnetic flux density can be evaluated at an arbitrary

location. After calculating z-component B
z
 of the magnetic flux

density at a specific point, we get the time sequence, , , ,

. By using the FFT algorithm, the sequence is easily trans-

formed to .

By using the axisymmetric FEM program, the authors investi-

gated the time variation of the shielding current density in cases

where ρ
f
 and j

C
 depend strongly on B. Furthermore, they performed

the spectral analysis of the generated magnetic flux density to find

that the third harmonics are excited abruptly with an increase in
B

0
 [3]. Such a sudden onset of the third harmonics was also ob-

served in the experiments by Claassen et al. [6] Unlike our earlier

work, the B-dependence of ρ
f
 and j

C
 is neglected in this study. The

power spectrum of the magnetic flux density is calculated by us-

ing the 3D code and is depicted in Fig. 2. Although the intensity of
the n = 1 mode does not change, the n = 3 mode is weakened with

an increase in B
0
. Therefore, we cannot reproduce the sudden on-

set of the third harmonics numerically if the B-dependence of ρ
f

and jC is neglected. From the above results, we might conclude

that its sudden onset is closely related to their B-dependence.
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Fig. 1. Spatial distribution of the shielding current density at t = 42/(25f) for

the case with B
0
 = 1.0 T. The distribution is calculated at z/a = 1/120.

Fig. 2.  Dependence of the normalized power spectrum on the applied mag-

netic flux density. The magnetic flux density is calculated at  = (0, 0, −0.06).

: n = 1 and : n = 3. Here, n denotes the index of the Fourier mode.
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Abstract �The design of anisotropic magnetic material is an 
important area of electromagnetic fields because these materials are 
used in a large number of electromagnetic devices. This paper presents a 
design method to maximize the average torque in 6/4 Switched 
Reluctance Motor (SRM) used anisotropic and isotropic magnetic 
materials. In order to confirm design results, Finite Element Method in 
which the time varying magnetic field is combined with driving circuit of 
SRM has been used effectively. In order to see the difference between 
anisotropic model and isotropic model, the conventional SRM designed 
as isotropic material was also calculated. 

�. INTRODUCTION

Switched Reluctance Motor (SRM) has doubly salient 
poles and generates the electromagnetic force by the variation 
of inductance according to a position. Therefore, it is possible 
to increase the average torque with more accurate modeling 
and understanding of flux behavior within SRM. The 
difference (dL) between the unaligned inductance and the 
aligned inductance influences the performance of SRM [1]. 
To make the inductance difference larger, it is desirable to 
make the unaligned inductance smaller or aligned inductance 
bigger. For this purpose, the existing papers were focused on 
pole shape design of the rotor and stator, but this paper 
suggests new model that improve inductance characteristic by 
substituting anisotropic iron-core material for the stator teeth. 
The proposed model may be effective in the point of the 
inductance difference. In this paper, we investigate the 
effectiveness of the proposed SRM model, which has 
anisotropic iron-core material structure. 

�. MODEL DESCRIPTION AND FINITE ELEMENT FORMULATION

A. Description of Analysis model 

When the saturation is neglected, the instant motor torque 
(T) is calculated by derivative of the inductance (L), which is 
a function of rotor position (� ), as shown in (1) 

�

�

�

d
dLiiT )(

2
1),( 2

���                              (1) 

Fig. 1 shows cross section view of the proposed SRM. 
The direction of the magnetic flux density B and the magnetic 

field H in stator teeth of SRM is always in the same direction. 
Stator teeth can be designed anisotropic material to reduce 
magnetic resistance and leakage flux. As shown Fig. 1, the 
large arrows indictate that the easy magnetizing direction of 
the anisotropic steel sheet is radial in each pole. On the other 
hand, rotor and back yoke cannot be designed anisotropic 
material, because their directions of magnetization vary along 
the motor rotation. 

B. Finite Element Formulation 

Anisotropic nonlinear magnetic field has to be analyzed to 
evaluate the effectiveness of proposed model. Most of 
conventional anisotropic analyses are applied to transformer 
and there are not difficulties because the easy axes are x-axis 
or its perpendicular [2, 3]. But the proposed model has a 
difficulty to analyze in an x-y coordinate because the easy 
axis of an element, 

��
E , in a stator pole is � -axis as shown 

in Fig. 1.  
If the magnetic vector potential and current density have 

only a z-axis component, the governing equation for SRM can 
be expressed in a magnetic vector potential A as follows: 

� � � � 0����������� oJyAyxAx �� ,              (2) 

where � is the inverse of permeability, A is the magnetic 
vector potential, and J0 is the input current density. 

There are two formulation methods in this case. First, 
formularize governing equation (2) for x-y coordinate using 
tensor of inverse permeability as shown in (3). Secondly, 
transform coordinate from x-y coordinate to �� � coordinate 

Fig. 1. Cross section view of switched reluctance motor 
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as shown in (4). Equation (4) is more profitable in the point of 
the computation time. This paper applies (4) to anisotropic 
analysis after converting x-y coordinate into easy-axis 
coordinate for each element of the stator poles. 
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�. ANALYSIS RESULTS AND DISCUSSION

Fig. 2 shows the magnetic flux distributions of SRM at 
unaligned position. In the figures, more large fluxes of the 
proposed model flow into the air between the stator and rotor 
than that of conventional model. Therefore, it is possible to 
predict that the reluctance of the proposed model may be 
larger at unaligned position. 

Fig. 3 shows the inductance profiles according to the rotor 
position. The difference of the inductance of the proposed 
model is large than that of the conventional model. This 
inductance characteristic effect on SRM performance, 
especially the torque density and torque ripples. We will 
presents additional results in the full paper. 

�. CONCLUSION

The design of material in switched reluctance motor has 
been presented and expressed using finite element method. In 
order to increase the average torque with more accurate 
modeling and understanding of flux behavior within SRM, 
anisotropic and isotropic materials have been considered in 
motor design. The proposed design method can also be used 
wide range of electromagnetic devices. 
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(a) Conventional model; isotropic 

(b) Proposed model; Anisotropic 

Fig. 2. Flux distribution of switched reluctance motor 

Fig. 3. The inductance profiles according to the rotor position 
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Abstract � The paper describes a simplified vector hysteresis model 
developed for a pulse magnetization of anisotropic permanent magnets. 
The model is tested on the magnetization of sintered and hot deformed 
anisotropic rings.  The magnetization problem is solved by integral 
method, and the distribution of the magnetization vector is used to 
calculate a static field around the ring. The predicted magnetic field is 
compared against the measured one in the open and closed magnetic 
circuits.   

INTRODUCTION 

The radially anisotropic permanent magnet rings are 
widely used in servomotors. They can be produced through 
sintering process or hot deformation of the fully dense 
preformed magnets. The microstructure and, therefore 
magnetic properties are dependent on the production process. 
The sintered ring has a steeper virgin curve and highly 
nonlinear minor demagnetization curves. The extruded rings 
in general are less homogenous in axial direction. However 
they have minor demagnetization curves with much smaller 
slopes that is a significant benefit when shaping the poles is 
required. Together with skewing, shaping the poles is often 
used to control a content of high harmonics in the back-emf 
and torque of electrical motor. Unlike isotropic magnets 
different pole’s profiles can be achieved in anisotropic rings 
only by its partial magnetization. Obviously a hysteresis 
model with minor loops is required to predict the distribution 
of magnetization vector across the pole. A simplified model 
of vector hysteresis [1] has been incorporated in the 2D finite 
element solver to simulate the pulse magnetization of 
anisotropic magnets. In this paper, results from 3D modeling 
along with the test data are presented for the radially oriented 
ring. Some possible improvements in the model like 
including the off-diagonal components in the susceptibility 
tensor are discussed. 

HYSTERESIS MODEL

The characteristics of magnet along both easy (radial 
direction) and transverse (circumferential/axial directions) 
axes are defined by a virgin curve in the first quadrant of the 
B-H plane and a series of demagnetization curves in the first 
and second quadrants. A table for the virgin curve is used 
until Bsat when the permeability reaches one.  Each 
demagnetization curve is approximated by a quadratic 

polynomial with three coefficients a,b,c (Fig.1). To determine 
the demagnetization characteristics between the defined set of 
quadratic polynomials, a nonlinear interpolation between the 
polynomial coefficients are used. Because some of the minor 
loops for sintered rings have a complicated shape, the 
quadratic approximation is applied separately to two portions 
of the demagnetization curves in the first and second 
quadrants, respectively (Fig.2). This requires two different 
sets of coefficients for the same material. The first set is used 
for the simulation of the pulse magnetization, while the 
second one is loaded in the magnet model when the solution 
is exported into the application model   
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ANISOTROPIC MAGNET RING MAGNETIZED IN PARALLEL FIELD

 Although normally more than two poles are required for 
the servomotor, a straight magnetization (Fig. 3) is 
considered for validation of the model. To find a distribution 
of magnetization vector across the magnet the following 
transient problem is solved   

where He is the magnetizing field varied with  time,  M is the 
magnetization vector, Je is the eddy current density , � is the 
ectrical conductivity of magnet.  

When applying a time-variable field, the magnet follows 
its virgin curve. The field vector is resolved into components 
along the easy (radial) and transverse axes, so that each axis 
is treated independently. The transition from the virgin to 
demagnetization curves along each axis occurs when the 
corresponding field component starts to decrease. Once the 
material has switched onto a demagnetization curve, the 
magnetization corresponding to the intersection of this curve 
with the virgin curve is remembered 

RESULTS

The magnetization problem (1)-(3) was solved by an 
integral method with iterations on the magnetization at each 
time step The distribution of the magnetization vector was 
used to calculate the static field around the ring.  

The straight magnetization of ring magnet in a solenoid 
was used for experimental study.  The surface field profile 
was measured with a resolution of 1000 points per one 
degree. The comparison shows that test results are in good 
agreement with the predicted magnetization distribution only 
for hot extruded rings when the field is measured in the 
presence of back iron inside and outside of the ring (Fig.4). 
The discrepancy between the model and test increases for the 
open-circuit measurements when operating points in the 
magnet move towards H-axis. This is especially crucial for 
the sintered rings having highly nonlinear demagnetization 
curves. Extra minor hysteresis loops around an origin are 
required to predict the field oscillations near the ring neutral 
zone. The further improvement of the model to increase its 
overall accuracy is under way. 
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Fig.3.   Pulse magnetization of anisotropic ring in the parallel field   

-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

0 30 60 90 120 150 180 210 240 270 300 330 36
Angle, degrees

Fl
ux

 d
en

si
ty

, k
G

au
ss

Fig.4. Flux density distribution along the air gap between the back-
extruded ring and outer back iron : solid line = model, o = test

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 30 60 90 120 150 180
Angle, degrees

Su
rfa

ce
 fl

ux
 d

en
si

ty
, k

G
au

ss

Fig.5. Flux density distribution on the surface of  the back-
extruded ring with the inner core inside : solid line = model, o =
test

� � (3)
)(00

0)(0
00)(

)(
�

�

�

�

�

�

�

�

�

�

�

zz

rr

HM
HM

HM
HM

��

��

(1)dv
RJ

4
1dvRM

4
1

mm V
3

e

V
3 ��

�

����

RR
HH e

����

��

��

(2)dvHM
4

mV

0
�

�

��

�

�

��

Rt
Je

��

�

�

��

143Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003
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Abstract—A novel modeling method based on the normal
distribution of the dipoles is used to represent the B-H loop of
magnetic materials. The dipole representation can be expressed in
2-orientation and 4-orientalisation.  Depending on the accuracy, the
modeling method typically requires only the magnetic saturation
parameter, the critical H-field and a few control parameters.
Experimental results show the method can be used to represent the
B-H loop of materials very accurately.

INTRODUCTION

The modeling of B-H loop using finite element [1] and
Preisach mode [2-3] has been proposed by many
researchers with success.  On the other hand, the dipole 
theory of the magnetics facilitates the consideration of the
magnetic dipoles in two or more orientations and that can
be computed using the accumulation effect.

In the absence of magnetisation, the domains are
randomly distributed and the total number of dipoles in
either orientation is equal. When magnetisation occurs,
the dipoles distributions are then aligned towards one
orientation.

DIPOLE ORIENTATION THEORY

Assume N0 and N180 are the total number of dipoles in
the two orientations, the total number NT which is a
constant is: 

                            (1) 1800 NNNT

The normally distributed domains tend to align along
the same direction as that of the applied magnetisation.
Therefore the B-field for a given H is: 

0
)()()( dxxpdxxpkHB

H
               (2) 

where k is a scaling constant and p is the normal
distribution function which is:

2

2

2
)(

)(
mx

exp  (3) 
where m is the mean value of p(x) and  is the standard
deviation.  The first integral of (2) is to describe the
distribution of the dipoles whereas the second integral is 
to ensure the B-H hysteresis is balanced between the
positive and negative values. Its value can be
approximated by:

25.1)(
0

dxxp (4)

A B-H loop is formed by an upward trajectory and a 
downward trajectory.  Eq. (2) is in fact a function of four
independent variables. Therefore the trajectory is 
re-written as B(H,k,m, ). The upward trajectory can then
be represented by:

))25.1/(,2/,,( kBHkHBB satcu              (5) 

the downward trajectory is represented by:

))25.1/(,2/,,( kBHkHBB satcd              (6) 

where Bsat is the saturated field and the domains are either
aligned to 0  or 180 of the applied field; Hc is the critical
H-field when B=0.  It should be noted that:

kBsat 25.1                                (7) 

mH C                                       (8) 

The Bu and Bd form a limiting loop. The above
equations form a simple and realistic mechanism to model
the B-H loop of a magnetic material.  The method can also 
be used to calculate the minor loop under DC and AC
operations. Once B-H is determined, the hysteresis loss
Ph can be determined easily by calculating the area
enclosed by B-H loop.

Higher orders orientations such as 4, 8, etc can also be
used.  The basic equation for four orientations of 0 , 90 ,
180  and 270  can be described by 2 normal distribution
functions as:

0

22

0

11 )()()()()( dxxpdxxpkdxxpdxxpkHB
HH

  (9)

COMPUTATION RESULT

Fig 1 shows the normal distribution of the domains for
the upward magnetisation of m = -300A/m and downward
magnetisation of m = 300A/m for a typical ferrite.  The
corresponding B-H is shown in Fig 2 with the following
describing parameters: Bsat=0.31T, Hc=300A/m that are 
based on k=0.02 H/m, =250A/m.
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Fig 1 Probability distribution function of the domain

Fig 2 B-H loop formed by the probability distribution function 
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MEASUREMENTS AND SIMULATIONS

Fig 3 shows the B-H curve of the low-permeability
materials poly10 with a composition of Co and Ni in the
ratio of 20:10.  The H-field is increased to 33kA/m in
order to produce a B-field of 0.11T. It can be seen that the
materials have a very low relative permeability of only 2.7.
The corresponding hysteresis loss is 480J/m3.

Fig 3 Measured B-H loop of the new material poly7
(y: 0.06T/div, x: 13.3kAm-1/div)

The above modelling techniques can be used to model
new materials.  Fig 4 shows the computed B-H loop. The
parameters used in the simulations are:

   k=0.0035 H/m, m= 1000 A/m, =45000 A/m
It can be seen that the proposed method represents a 

simple method to model the B-H loops of magnetic
materials.

Fig 4  Simulation of the B-H loop of material poly10

CONCLUSIONS AND DISCUSSIONS

The proposed modeling method gives a simple but
powerful representation of the characteristics of magnetic
materials. It can be shown that the higher the number of
orientations being used, the more accurate is the model.
Nevertheless, the amount of input data is typically quite
small.  In the case of two orientations, only the values of k,
m,  are necessary.
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Abstract � Numerical method for calculation of the power losses of
nonlinear laminated ferromagnetic cores is presented. The calculation is
made in two subsequent steps. In the first step, the approximate magnetic
field distribution in the material is determined assuming a non-laminated
bulk nonlinear ferromagnetic material with anisotropic conductivity. In
the second step the nonlinear ferromagnetic material of the laminated
core is replaced to linear material with spatially inhomogeneous
permeability. The actual permeability distributions of the lamination are
determined based on the magnetic field obtained from the first
calculation and the nonlinear B-H curve of the material. In this paper the
outlined method is verified through calculations made by FEM studying
a simple benchmark arrangement. Different methods for assigning the
inhomogeneous permeability are also investigated.

INTRODUCTION

Calculation of losses in laminated ferromagnetic cores
pose a quite time consuming task for conventional
electromagnetic field calculations. The main reason of the
required huge computational work is the fact that the
thickness of the sheets forming the laminated core is very
small (0.3-0.5 mm) compared to the other dimensions of the
devices. Consequently, a very large number of elements (and
unknowns) is resulted for the accurate analysis of the
ferromagnetic core of such devices. In a previous paper [1]
we presented three efficient methods for the approximate
prediction of the eddy current losses in the case of linear
core material. These methods process the field distribution
obtained from anisotropic solution considering the real
laminated geometry. The computational costs are drastically
reduced and predictions of losses are significantly improved
applying this treatment. Recently we intended to extend
these methods for the treatment of nonlinear ferromagnetic
materials. In order to perform this, we developed a method
to model the homogeneous nonlinear material as spatially
inhomogeneous but linear material. In the present paper we
describe this method. The validity of the described method
will be studied through the analysis of a benchmark
arrangement. In the following sections the method
calculation of inhomogeneous permeability, the studied
benchmark configuration and reference solution is
presented, following which the power loss prediction is
compared with the reference data. In the final paper we will
investigate the way of the discretization of the

inhomogeneous materials coupled to the method of the
permeability assignment in order to further improve the loss
prediction; moreover the proposed method also will be
verified comparing the calculated results to measured ones.

CALCULATION OF INHOMGENEOUS PERMEABILITY AND LOSSES

The real electromagnetic field inside the laminated core is
approximated in two subsequent steps. In the first step the
laminated core is modeled as a homogeneous medium whose
B-H curve is nonlinear and whose conductivity is
anisotropic having zero conductivity in the direction
perpendicular to the laminations. This so-called anisotropic
solution gives an agreeable approximation of the overall
electromagnetic field distribution for the core, but the power
loss obtained from this solution is not correct [1].

During the second step of the calculations the sheets of
the laminated core are discretized on a regular grid. In each
brick, the material is substituted by a linear material whose
permeability is determined based on the nonlinear B-H
curve and the magnetic field obtained from the anisotropic
solution. In the paper we used two different methods for this
purpose. In case of method #1 the equivalent permeability of
a brick is calculated as the slope of the line on the B-H plane
connecting the origin with the actual point of the B-H curve
corresponding to the maximum value of the first harmonic
of the magnetic field average calculated on the given brick.
To get physically more realistic permeability prediction, this
very simple method can be replaced by a more sophisticated
one (method #2), when the effective permeability is
calculated by the RMS method described in [2]. In this case
assuming the magnetic field strength ),( tH r is a time

harmonic function everywhere in the core material, the
permeability is calculated as

( )
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rmsT
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dttB
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where ( )tB is calculated for every time step using the B-H

curve of the material, and Ĥ is the first harmonic amplitude
of the magnetic field intensity. T denotes the length of one
period.

In the second step of the calculations the obtained linear
and inhomogeneous laminated core is analyzed. During this
analysis, the sheets of the laminations are processed one by
one using the averages of the field values tangential to the
laminate as input data. Detailed presentations of these
methods can be found in [1]. Having the result of this
calculation, the power loss produced by small eddy currents
flowing in the cross-sections of the sheets is also obtained.

BENCHMARK ARRANGEMENT

The geometry of the benchmark problem studied is
shown in Fig. 1 where the dimensions of the arrangement
are also displayed. The exciting coil is driven with a
sinusoidal current that frequency is 50Hz and the total
exciting current is 24 103 AT. The conductivity of the core
material is 5,875 MS/m. The B-H curve of the applied core
material is shown in Fig. 2.

x

z

10 mm

10
m

m

22 mm

y

z

20 mm

10 mm
Cylindrical coil

Laminated core

Examined domain

Sheet No. 1

Sheet No. 5
.
.
.

Fig. 1. Geometry of the benchmark configuration
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Fig. 2. B-H curve of the ferromagnetic core

REFENCE SOLUTION

In order to evaluate the results of the described methods,
the transient analysis of the laminated nonlinear core is also
done. The result of this calculation will be referred as the
reference solution. The calculations used as reference are
carried out by FEM code using second order hexahedral
elements. For the solution of the problem the T,Ψ-Ψ
formulation is used. This method gives the possibility to
model the laminations by prescribing the tangential
component of the current vector potential, T, to zero on the
boundaries between the sheets. The average power loss is
calculated as the mean value of the instantaneous losses
determined for a whole period of the transient solution.

RESULTS

In Table I, the power losses of the core material calculated
from the reference and the anisotropic solutions and the loss
approximation obtained by FEM using the spatially
inhomogeneous permeability are compared. We can see that the
loss predicted using the proposed method gives considerably
better result than the anisotropic solution.

TABLE I. CALCULATED LOSSES

Power Loss [mW] Method #1 Method #2

Sheet # Reference Anisotropic Loss [mW] Error
[%]

Loss
[mW]

Error
[%]

1 6.0970 - 8.3561 37.05 7.9717 27.80

2 6.8711 - 7.9452 15.63 7.3249 6.60

3 8.2701 - 9.5844 18.89 8.6550 4.65

4 9.4344 - 12.2224 29.55 10.8752 15.27

5 10.1223 - 15.1951 50.12 13.3599 31.98
�

40.7949 5.2052 53.3032 30.66 48.0067 17.68
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Abstract - In this paper, an evolutionary approach to the variability 
analysis applied to a cable termination equipped with a composite 
material based stress control tube (accessory used for the stress relief in 
cable terminations) and modeled by means of a lumped non-linear 
circuit is presented. The evolutionary algorithm allows minimizing the 
underestimation error that affects classical Monte Carlo-based methods. 
The technique gives reliable results also whenever large parameters 
variations need to be taken into account and performance functions that 
are non-linear with respect to parameters are considered.  

I. INTRODUCTION

In recent years, variability analysis has become a crucial task 
in system design because of the increasing demand of high-
performances and high reliability devices. Modern CAD tools 
need to be capable of handling large variations and 
uncertainties that may affect the system parameters. Aging, 
temperature stress, field stress, radiation, distorted operation 
give rise to an increase of the factory tolerance, which only 
depends on system manufacturing technologies. Moreover, if 
parasitics are considered, their uncertainty is intrinsically 
large, the statistical distribution of their values is in general 
not known and often no prior knowledge about their 
correlation is available. In such conditions, variability 
analysis results in Worst-Case Analysis (WCA), with 
parameters’ values uncorrelated and uniformly distributed. 
Performing an effective and reliable WCA in presence of 
large parameter variations means to be able to provide a 
neither too optimistic nor too pessimistic foreseeing. A too 
optimistic True-Worst-Case (TWC) foreseeing in systems 
design compromises the compliance with regulations and/or 
performance constraints. On the other side, a too pessimistic 
foreseeing leads to badly sized systems and/or to products 
less competitive for the market. 

II. PROBLEM FORMULATION

In fig.1a a Stress Control Tube (SCT) in a cable termination 
is depicted. SCT’s are tubes of suitable stress grading 
materials characterised by a rather high non linear 
permittivity and a non linear resistivity. Such materials are 
used in order to reduce the electric field enhancement in high 
voltage cables-terminations and are obtained by loading the 
polymeric matrix with suitable fillers such as carbon-black. 
SCT’s can be modelled with the simple transmission line RC 
network [2] shown in fig.1b. The cable termination is divided 
in N elements of length z, characterised by a transversal 
capacitance Ct, a longitudinal capacitance Cl and a 
longitudinal conductance G. Such parameters assume the 
following expressions:  
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The capacitance Ct is associated to the elementary flux tube 
inside the cable primary insulation; r is the relative 
permittivity of the cable main insulation while r1 and r2
represent its inner and outer radii. Capacitance Cl and 
conductance G are associated to the SCT; in particular  is its 
thickness and (V) and rt(V) are respectively the nonlinear 
resistivity and the nonlinear relative permittivity of the SCT.  

a) 

b)
Figure 1. a) Schematic setup of a cable termination based on a heat 

shrinkable SCT; b) equivalent lumped parameter network. 

The potential vector v(t)=[v1(t),v2(t),…,vn(t)], obtained by 
evaluating the potential in the sections represented by the 
nodes (1,2,…,n) in fig.1.b, gives the discretized potential 
distribution along the cable. To verify the design reliability, 
we need to keep into account uncertainties and variations of 
materials characteristics, which bring about variations of the 
potential and field distribution along the cable with respect to 
the “nominal” one obtained giving “nominal” values to the 
SCT parameters. Parameters set include both geometrical and 
electrical parameters. The varying parameters considered in 
this paper are the main insulation relative permittivity r

spanning the range [2,7], the SCT thickness  in the range 
[0.1,0.3]cm. Moreover, SCT permittivity has been expressed 
by a third order polynomial, whose four coefficients have 
been supposed to be affected by a ±10% variation, to keep 
into account manufacturing tolerances. The resulting band is 
reported in fig.2, together with the non linear, but certain, 
resistivity. Our goal is to determine the upper and lower 
bounds for the maximum value of the vector v(t), 
V=[V1max,V2max,…,Vnmax], embedding all the possible 
solutions admitted by the variations of the mentioned 
parameters, supposed uncorrelated and uniformly distributed.  
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a)    b) 
Figure 2. a) non linear resistivity adopted, b) uncertainty permittivity bound 

(-=nominal, --=upper and lower bounds). 

The vector V is evaluated after the steady state has been 
reached; due to system non-linearity, V does not have an 
explicit expression and it is strongly non-linear with respect 
to parameters. The WCA is usually performed by Monte-
Carlo (MC) analysis, at a high computational cost due to the 
big amount of trials required to get a solution that is 
sufficiently close to the True Worst Case (TWC). This 
drawback is as much evident as larger the parameters’ 
variations and sensitivities are. A great improvement in 
computation time and accuracy can be obtained by the 
evolutionary “intelligent” MC approach illustrated in Sect. II. 

II. THE EVOLUTIONARY ALGORITHM

The Evolutionary Algorithm (EA) works on a population of 
real-coded individuals, each one represented by a six 
components vector, each component being related to one of 
the uncertain parameter, which are free to assume values 
within the ranges of variation mentioned in Section I. Each 
set of parameters corresponds to a unique vector V of node 
potentials. Consequently, a Worst-Case Envelope (WCE) can 
be built up for each EA generation picking, for each node, the 
maximum and the minimum values among the potential 
distributions associated to the individuals. The fitness 
associated to each individual is an integer number in the 
range [1,n]: it has been chosen equal to the number of nodes 
wherein the potential value improves the WCE obtained up to 
the current generation. For example, referring to the 
evaluation of the upper bound of the worst case, at each 
generation the WCE is updated by taking, for each node, the 
maximum value among the ones given by the individuals of 
the current population. In place of blindly taking sets of 
parameters within the tolerance ranges as in MC WCA, the 
new trial sets of parameters are generated using the fitness 
value to drive the reproduction: the larger is the number of 
nodes wherein the solution overcomes the WCE, the higher 
the surviving probability of the genetic wealth of the 
individual. This makes the proposed EA-based approach a 
kind of intelligent MC analysis. Note that the current WCE 
does not correspond to a given set of parameters: it is a 
collection of the best parts of all the solutions explored during 
the evolution. This notably increases the selection capability 
of the EA. 

III. SIMULATION RESULTS

Fig.3 shows the envelope obtained by EA (40 individuals 
over 15 generations to evaluate the upper bound and the same 
for the lower bound), compared with the one given by MC 
(3500 trials) and vertex analysis (26 evaluations). Each 
marker indicates one of the n=30 nodes of the circuit model 
of fig.1b. The nominal solution has been also plotted, to put 
in evidence the potential sensitivity with respect to the 
varying parameters. Fig.3b highlights the discrepancy 
between the MC and EA results, in spite of the larger number 
of MC evaluations (EA=1200, MC=3500). By fixing the 
number of evaluations at 1200, the discrepancy increases, as 
shown in fig.3c. Note that the computation time required by 
the evaluation of the vector V is in fact quite high with 
respect to the one the EA needs to generate offspring. Finally, 
the EA approach gives a better estimation of the TWC, 
namely a potential WCE that in every node is larger than the 
one achieved by the MC analysis. 
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b)    c) 
Figure 3. a) final WCE ( =EA, O=MC, +=VA, -=nominal solution); 

discrepancy between EA and MC (O=lower bound, *=upper bound): b) 3500 
MC trials, c) 1200 MC trials. 

IV. CONCLUSIONS

In this paper, the worst-case tolerance analysis of a cable 
termination employing a composite material based SCT is 
presented. The calculation of an underestimation of the true 
worst-case is performed by means of an evolutionary 
algorithm, with a considerable gain in terms of accuracy or 
saving of computation time with respect to classical MC 
based methods.
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Abstract � In this research, a new design to reduce the 
discontinuities of the pumping forces of the magnetic fluid linear pump 
(MFLP) is studied. Forming shapes of the magnetic fluid at the 
intermediate moment is computed based on magneto-hydrodynamic 
analysis[1-2] so as to reduce the pumping discontinuities. Continuous 
pumping of the newly designed MFLP increases pumping efficiency and 
reduces the pumping shock. All the more, because back flow pressure is 
reduced remarkably, 4 yokes instead of 7 yokes are turned out to be 
enough to operating the MFLP without weakening of the pumping forces. 

I. INTRODUCTION

In previous works [1-2], we developed the magnetic fluid 
linear pump (MFLP). In this device, the sequential currents 
are needed to produce pumping forces so that pumping forces 
are mainly depended on the current patterns. The excessive 
forces at pumping moment could cause the medical shock [3], 
and weak forces at intermediate moment could cause the back 
flow of the pumping liquid. In this research, instead of DC, 
AC with 90 degree’s phase differences are studied to reduce 
the excessive forces and back flow of the pump. Forming 
shapes of the magnetic fluid at the intermediate moment are 
analyzed to reduce the discontinuities of the pumping forces. 
Continuous pumping forces increase the pumping efficiency 
so that the length of the MFLP could be reduced to half size. 

II. FORMING OF THE MAGNETIC FLUID

The forming shapes of the magnetic fluid are determined by 
the the driving currents. From the magneto-hydrodynamic 
analysis, the mass conservation law and moment conservation 
law gives, 

                                           (1) 

                                (2) 

In the equation, � is the mass density and V is the velocity 
vector. The forces include the gravitational force, mechanical 
force and  ectromagnetic force. So, (2) becomes 

                   (3) 

By using vector notation, we could have the following 
equation in steady flow.  

     (4) 

If the fluid is irrotational such as potential flow, (4) becomes  

                          (5) 

In this equation, Pi is the pressure inside the fluid and C is 
called dynamic constant. At the boundary surface of the 
magnetic fluid, the forces inside the fluid are equal to the 
forces outside the fluid because liquid is free to move to the 
equilibrium state, which leads  

                              (6) 

From (5) and (6),  

  (7) 

So, the dynamic constant is represented as following, 

   (8) 

Right hand side terms of (8) are applied pressure difference, 
magnetic field energy, momentum energy, gravitational 
energy and surface tention energy, respectively. The dynamic 
constant C in (8) is always the same value at the fluid surface. 
From the conventional nonlinear finite element method, right 
hand side of (8) could be computed at the given shape of the 
fluid. Because the geometry of the system is free to move 
with respect to net forces, (8) should be solved iteratively to 
obtain the forming shapes of the magnetic fluid[1-2]. 

III. NEW DESIGN OF THE MFLP TO REDUCE THE PUMPING DISCONTINUITIES

Fig. 1 shows the Magnetic Fluid Linear Pump(MFLP)[1]. 
There are 7 yokes and DC pulses as in Fig. 2 are used to 
operating the MFLP[1-2]. In the operation, there are driving 
force discontinuity as in Fig. 3 because of the space between 
yokes. In Fig. 3, the space d between the changes of each 
mode reduces the pumping efficiency and this could cause the 
back flow of the liquid.  �����������
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 In this research, AC driving as in Fig. 4 is studied to 
increase the pumping efficiency and reduce the pumping 
shock at the pumping moment. In each state in Fig. 4, the 
forming shapes of the magnetic fluid are computed as shown 
in Fig. 5 and Fig. 6. Magnetic field and forming shape inside 
the MFLP along with time and space is plotted in Fig. 7. 
Between each mode, the transient state reduces the pumping 
discontinuities so that pumping efficiency is increased and 
pumping shock is reduced. All the more, because back flow 
pressure is reduced remarkably, 4 yokes are turned out to be 
enough to operating the MFLP without weakening of the 
pumping forces.  

Fig.1 Magnetic Fluid Linear Pump 

Coil 1 Coil 4Coil 2 Coil 3

Mode 1

Mode 2

Mode 3

Mode 1

I

Fig. 2 Operating Current ( DC Driving )

Fig. 3 Discontinuities of the Driving Forces between each mode

T
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Fig. 4 Operating Current ( AC Driving ) 

Fig.5 Computed Forming Shapes in AC Driving  

Fig.6 Changes of the Forming Shapes in AC Driving 

Fig.7 Continuities of the Driving Forces between each mode 

IV. CONCLUSIONS

In this research, the pumping discontinuity of the MFLP is 
analyzed and a new design to reduce the discontinuties are 
studied by magneto-hydrodynamic analysis. Forming shapes 
of the magnetic fluid at the intermediate moment is computed 
so that continuous pumping of the newly designed MFLP 
increases pumping efficiency and reduces the pumping 
shocks. All the more, because back flow pressure is reduced 
remarkably, 4 yokes instead of 7 yokes are turned out to be 
enough to operating the MFLP without weakening of the 
pumping forces. 
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 Abstract  In this paper, the method for modeling laminated core by 
solid model is investigated. The method for taking into account eddy 
current in each steel plate used for laminating, which is developed in 
the linear analysis, is expanded to the nonlinear analysis. The space 
factor of the lamination is also considered. The effectiveness of the 
proposed method is shown by using a simple model.  

INTRODUCTION

In electrical machines, laminated cores are commonly 
used in order to reduce the eddy current losses. In the finite 
element analysis of the magnetic field in such a machine, 
the laminated core is normally modeled by the solid model 
in order to save the computation cost. In the ordinary 
method, the eddy current in the core is neglected because 
the eddy current loops in laminated cores are much different 
from those in solid cores. However, it seems that the eddy 
current in the steel plate used for laminating sometimes 
cannot be neglected, such as a machine with an inverter 
power supply of which voltage has harmonic components.  
  Recently, the method of magnetic field analysis taking 
into account eddy current in laminated core is proposed in 
the linear analysis [1]. In this method, the laminated core is 
modeled by the solid one with anisotropic permeability and 
conductivity, and the analytical solution is adapted for cases 
that take into account the eddy current in the steel plate. In 
this paper, the method is expanded to nonlinear analysis by 
using the 1-dimensional (1D) eddy current analysis instead 
of the analytical solution in the steel plate. Moreover, the 
space factor of the lamination is also considered in order to 
obtain more accurate results. Finally, the effectiveness of the 
proposed method is investigated by using a simple model. 

METHOD OF ANALYSIS

Laminated core and Solid Core Model 

The core constructed by laminating steel plates 
(permeability *, conductivity *) and the approximated 
solid model are shown in Fig. 1. In this paper, the laminated 
core is modeled by the solid core model with anisotropic 
permeability ,  and conductivity ,  [1]. The 
subscripts  and  denote values in parallel and 
perpendicular directions to the lamination, respectively. The 
method for determining each constant is described below. 

Conductivity 

As both paths of the eddy currents, Je * and Je , parallel 
to the lamination in laminated and solid cores are the same, 
as shown in Fig. 1, Je  is considered. Then,  is given by 
the following equation using the space factor F:

Je *

,

(a) laminated core (b) solid core model

Je *
B *

B *

Fig. 1.   Laminated core and solid core model
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Fig. 1.   Laminated core and solid core model
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i

Je
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On the other hand, the perpendicular components, Je *

and Je , of the eddy currents are much different in the two 
cases. Therefore, Je  is neglected, and the effect of Je * is
taken into account by the permeability . Namely, the 
conductivity  becomes zero as follows: 

0 (2)

Permeability

In order to determine the permeability  taking into 
account Je *, the flux distribution in the steel plate is 
calculated by the 1D nonlinear eddy current analysis (called 
“sub-analysis” in this paper). The mesh for the sub-analysis 
of the steel plate with thickness 2d is shown in Fig. 2. The 
vector potential, Ad

(jp), at node jp on the Dirichlet boundary 
at z=d is given by the flux density B (ie) of element ie in the 
3D nonlinear eddy current analysis of the solid model 
(called “main-analysis”) as follows: 

dBA iejp
d

)()( (3)

In the nonlinear iteration, the flux density, Bh
(je), for 

evaluating the nonlinearity in the element je in the sub- 
analysis is defined by not only the flux density B (je), but 
also the flux density B (ie) in the main-analysis as follows: 

2)(2)()( iejeje
h BBB (4)

Fig. 2.   Mesh for sub-analysis (1D)
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Finally, the permeability (ie) used in the main-analysis is 
determined by the following equation: 

)()( jair)ie(ie HB (5)

where H (jair) is the magnetic intensity in the air obtained 
from the sub-analysis. 

The permeability ie  is given by the following equation: 
Nej

je

jejeie ld
1

)()()( (6)

where Nej is the total number of elements and l is the length 
of element in the sub-analysis. 

Flowchart

The flowchart for the proposed method is shown in Fig. 3. 
The sub-analysis is carried out for each element ie at each 
nonlinear iteration in the main-analysis. The Newton- 
Raphson method is used for both nonlinear iterations: 

Fig. 3.   Flowchart  
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INVESTIGATION OF EFFECTIVENESS

Model and Analyzed Condition 

In order to investigate the effectiveness of the proposed 
method, the nonlinear magnetic field in the model shown in 
Fig.4 is analyzed. The laminated cores are assumed to be 
placed in a row with gaps in y-direction infinitely. Each core 
is constructed by laminating 20 sheets of steel plates in 
z-direction, and the space factor F is equal to 0.96. A 
uniform magnetic field Boy is applied in y-direction.
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Only 1/8 region of a core is analyzed using the finite 
element method with 1st order brick edge elements. Two 
kinds of meshes for real and solid models are used as shown 
in Fig. 5. In the analysis of solid model, the ordinary method, 
that completely neglects the eddy currents in the core and 
the space factor F, is also used for comparison. The transient 
analysis for a cycle T is carried out using the step-by-step 
method. The time interval t is equal to 1/16 T.

Results and Discussions 

  The average flux densities, Byave , interlinking the core at 
y=7.7mm at time t=0.75T are represented against frequency 
in Fig. 6. This figure shows that the result of the proposed 
method are in much better agreement with that of the real 
model, compared with the ordinary method. Table I shows 
the discretization data and the CPU time for each method. 
This table shows that the computation cost for the proposed 
method is much smaller than that for the real model. 

Fig. 5.  Mesh (core region)
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TABLE I   DISCRETIZATION DATA AND CPU TIME

no. of elements
computer 
storage (MB)
CPU time (h)

method real model solid model
ordinary proposed

30,300

70

5,187

14.2 0.3 1.9
computer used : Intel Pentium IV  2.4GHz

306 58

TABLE I   DISCRETIZATION DATA AND CPU TIME

no. of elements
computer 
storage (MB)
CPU time (h)

method real model solid model
ordinary proposed

30,300

70

5,187

14.2 0.3 1.9
computer used : Intel Pentium IV  2.4GHz

306 58
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Abstract— An effective numerical modelling of devices with 
lamination stacks cannot be done without replacing the lamina-
tions by an equivalent solid region. So far, no convincing model 
has been proposed, even in the “simple” case of linear magneto-
dynamics – particularly if the resultant current in each sheet does 
not cancel. In this paper, we define the homogenised fields, and 
the related material properties. The noteworthy precision of the 
homogenised solution is shown by comparing it with the exact 
solution of the problem with laminations in the case of a simple 
“1.5D” analytical test problem. 

I. INTRODUCTION

WO papers published over the last three years propose 
new ideas concerning the homogenisation of lamination 

stacks, to lead to simplified but accurate models for finite 
elements.  In [1] a static anisotropic problem is first solved, 
then the eddy currents are processed as a second order effect. 
The analytical space and time changes of fields and current are 
correctly taken into account; however, this method cannot be 
applied if the eddy currents have a perceptible effect on the 
static solution. Very recently in [2], the same analytical 1-D 
solutions have been a priori integrated into the test functions of 
the finite element formulation. The results obtained by this 
way are valid for a very large frequency range; on the other 
hand, only situations with a symmetrical magnetic flux density 
distribution in the normal direction of the iron sheets have 
been taken into account. In this paper, the validity of these 
formulations is extended.  

II. HOMOGENISATION

The well-known analytical solutions in a linear and conduct-
ing iron sheet concern the values of the tangential components 
of the magnetic flux density and magnetic field (in a direction 

on one hand, of the current density and electric field (in the 
direction  perpendicular to ) on the other hand. All these 
quantities vary in the direction  normal to the sheets, 
following the same shape functions f( ) et g( ), which are 
respectively odd and even functions : 
 f( ) =   sinh[(1+j) / ]/sinh[(1+j)d/2 ] (1) 
 g( ) = cosh[(1+j) / ]/cosh[(1+j)d/2 ] (2) 
where d is the plate thickness and  is equal to zero at the mid 
thickness of the plate.  

The integral value of g will also be used in the following: 
]j)d/2[(1 / ]j)d/2tanh[(1).d(gd

1G
d

 (3) 

If these particular variations in the sheets are accepted,  the 
values of the tangential component of each field (h , b , e  or 
j ) on the surfaces of the sheets define it everywhere; we get 

for any tangential quantity x : 
x( ) =  [x(d/2)+x(-d/2)].g( ) + [x(d/2)-x(-d/2)].f( ) (4) 
If the function x is continuous at the limit between two 

sheets, we can build a new function X, which is equal to x on 
these limits and vary linearly in the sheets. Then we get: 
X( =0)  = [x(d/2)+ x(-d/2)]    and (5) 
X/  . d/2 = [x(d/2)- x(-d/2)]   for   ]-d/2,d/2[   (6) 

X is a possible homogenisation of x. We could also build an 
homogenised function X  from the mean value of x through the 
sheets:  

d

).d(xd
10)(X   (7) 

The homogenisation requires also to write again the Max-
well’s equations – here the Amp re’s theorem and the Lenz’s 
law – in an integral form, on a scale greater than (or equal to) 
the thickness d of the sheets: 

d
0

).d(j
)(h)(h

limd.)]2/-d(h)2/d(h[
a

a
a

  (8) 

d
0

).d(b.j
)(e)(e

lim.)]2/-d(e)2/d(e[
b

b
b

 (9) 

where d  is the thickness of the insulating between two iron 
sheets1 (e  is supposed to be zero in the sheets, but not between
them). That is to say, with notations (6), (7) and E =e . d (that 
means that the circulations of the homogenised and actual 
electric fields E and e are equal in the direction ): 

J/H/H      and    Bj/E/E  (10) 

It remains to be written the phenomenological relations 
between the homogenised quantities. It can be seen that 
equations (3), (7), (4) and (5) lead to G.XX ; using the 
relations between the local fields b= h and j= e we get 2:

G.andG.:    with E.JandH.B  (11) 

In the normal direction , we will simply write: 
0and.:means    that 0JandH.B  (12) 

Consequently, the homogenised permeability and conductivity 
are defined as complex tensors:  and .

At this stage of our chain of reasoning, the homogenised 
fields and properties that we have defined, coupled with the 
shape functions f and g, are only an other way to write the 
analytical solutions in the laminated stack.  

1 Compared with d, the thickness  of the insulation will be neglected in the 
following: it could easily be taken into account in the homogenised properties 
(11) and (12), which just become more complicated.  
2 As far as possible, the notations of paper [2] are used here. Even if it is not 
obvious, it can be shown that the term FR of paper [2] is equal to 1/ : the 
two approaches are consistent. 
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The homogenisation principle itself  consists in assuming 
that the homogenised fields are a continuum following –  as a 
first step –  equations (10) and (11), and more generally 
speaking the Maxwell-like equations: 

EJHB0BBjEJH  (13) 

Replacing an actual discrete system of equations by a continu-
ous one, we clearly do an approximation; it will be more and 
more accurate, as far as the number of sheets will increase.  

III. ENERGETIC INTERPRETATION

In the real system, the losses are solely due to the eddy-
currents, and depend on . For one sheet, the mean value of 
these losses is: (14) 

ba

d

2

2

d

2

2

d

)(fd4

-d/2)(j-d/2)(j
)(gd4

-d/2)(jd/2)(j
)(j)(ed

1P ddd

After some calculations, we can prove that: 

ba

)BHjJEe(P R        [W/m3]  (15) 

In the same way, the imaginary part in (15) can be expressed 
as the mean value of – hb . This confirms the relevance of our 
choices for the homogenised quantities and properties.  

The first term (a) is linked to the even part of the local 
current density j( ); it will be represented in the continuous 
model by the losses of the homogenised current density J ,
which could be regarded as the “macroscopic” current density.  

The term (b) is linked to the odd part of the local current, 
which cannot be observed on a “macroscopic” level; it will be 
represented by the losses due to the difference of phase 
between the homogenised fields B  et H.

IV. TESTING THE MODEL

Manifold tests could be managed in 2D or 3D to compare 
finite element solutions obtained either with the “sheet by 
sheet” description of a laminated region, or with the homoge-
nised model. For this two page paper, we rather chose to 
present an other test, which points out the accuracy of the 
homogenised equations (10) and (11) in comparison with the 
real solution: this is actually the main point.  

The test device (Fig. 1) is excited on its front and back faces 
by a harmonic tangential magnetic field in direction . The 
global current (direction ) in each sheet is controlled by 
circuit equations, equivalent to resistances R (all identical and 
connected to a common point). For R , each sheet is 
completely insulated from the others, the solution is the same 
in each sheet, with a zero global current. For R=0 (short 
circuit) the lamination has no more effect, and the solution is 
that of a solid conductor (global skin effect); as a consequence, 
the global current in each sheet is not zero. The analytical 
solutions for this “1.5D” problem exist, for the “real” stack as 
for the homogenised equivalent system. It is therefore possible 
to show the error due to the homogenisation itself, independ-
ently of any finite element formulation.  

For the results presented in Fig. 2, we chose R to obtain 
non-zero global currents in each sheet, but, however, a 
solution very different from the simple short circuit one. The 
comparison shows how the solution of the homogenised 
equations represents the real laminated device. This practically 
perfect agreement was also verified for all the configurations 
we have processed.  

V. CONCLUSION

The implementation of equations (13) in a finite element 
software does not pose any technical problem, because the 
form of the classical equations is preserved. Only complex 
tensors have to be used for the material properties, instead of 
real numbers; the post-processing may be modified, if local 
values are required in the laminations. 
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Abstract This paper shows the results concerning both the TEAM 
Problem 21 and the TEAM-based test models, and details the stray-field 
loss behaviors via engineering-oriented benchmarking. 

INTRODUCTION

TEAM Problem 21 is an engineering-oriented loss model, 
which was approved by the International TEAM Board in 
1993[1] and updated in TEAM-Sapporo, 1999[2]. A number 
of results and some valuable conclusions concerning TEAM 
Problem 21 have been presented [1-14]. The TEAM 
activities have played an important role in progress of 
electromagnetics in engineering. Fortunately, thrice TEAM 
Workshops have been taken place in China: TEAM- 
Qiandaohu(1992), TEAM-Yichang(1996) and TEAM- 
Chengde(2000)[14]. Some important suggestions regarding 
TEAM have been made in TEAM-Chengde. 

As the further development of TEAM Problem 21, a 
TEAM-based benchmark family has been proposed [13]. In 
this paper the features and the essentiality of the Problem 21 
family are discussed and the newly obtained behaviors of 
iron loss are shown. 

PROBLEM 21 AND BENCHMARKING FAMILY

   TEAM Problem 21 shown in Fig. 1 has two models: 
Model A and Model B [1]. Model A consists of two exciting 
coils of the same dimensions and two steel plates. In the 
center of one steel plate, there is a rectangular hole. Model B 
consists of two exciting coils and one steel plate without hole. 
The direction of exciting current of one coil is different from 
that of the other coil.  
   In order to solve the key problems encountered in 
electromagnetic design, the engineering benchmarking is 
really necessary, because the bottleneck problems cannot be 
detailed and the analysis methods cannot be verified through 
a complicated engineering system. For example, the iron loss 
generated in the transformer parts, such as oil-tank, or 
core-plates with different number of slits, or the losses 
produced in the hybrid structure made of different materials. 
For this reason, the authors have proposed other 
benchmarking models based on TEAM Problem 21, named 
as Problem 21+(with slit-plate) [10] and Problem 21*(with 
the magnetic and non-magnetic plates) [13], as shown in Fig. 
2 and Fig. 3. Those models compose a Problem 21 family. 
The corresponding eddy current distributions for Problem 
21+ and Problem 21* are shown in Fig. 2 and Fig. 4, 
respectively.  

(a) Model A               (b) Model B  
Fig. 1. TEAM Problem 21 

Prob. 21+-0

Prob. 21+-1

Prob. 21+-2

Prob. 21+-3

Fig. 2. TEAM-based Problem 21+

Fig. 3. TEAM-based Problem 21* 
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Fig. 4. Eddy current distributions in both the magnetic (upper)  
and non-magnetic plates of Problem 21*(calculated by OPERA) 

RESULTS AND CONCLUSIVE SUMMARY

   A number of the calculated and measured results of 
magnetic flux densities, eddy currents and power losses 
concerning Problem 21 family have been obtained by the 
authors[1,2,10-13], as partly shown in TABLES I, II and III. 

TABLE I. EDDY CURRENT AND HYSTERESIS LOSSES
              (TEAM PROBLEM 21) 

Calculated (W) Model  
Methods  Pe  Ph  Pt  Ph/Pt(%) 

1  5.32 2.92 8.24 35.4 
A 2 5.36 3.04 8.40 36.2 

1  7.24 3.54 10.78 32.8 
B 2 7.70 4.11 11.81 34.8 

Pe: Eddy current loss;  Ph: Hysteresis loss;  Pt: Total loss. 

Notes: 
(a) The measured total losses (Pt) for TEAM Problem 21 are: 

Model A: 9.28(W); Model B: 12.56(W); 
(b) The definition of the methods in TABLE 1 is as follows:   
   Method 1denotes nonlinear transient method [11-12] (step by  
   step, with fine FEM mesh ); 
   Method 2 denotes quasi-nonlinear method [2, 15] (with fine 
   FEM mesh).

TABLE II. EDDY CURRENT LOSSES (PROBLEM 21+)

 Calculated(W) Number 
of slits 

Measured 
(W) 2-D method 3-D method 

0   9.17 14.75 9.31 
1   3.40 6.23 3.34 
2   1.68 3.07 1.66 
3   1.25 1.86 1.14 

TABLE III. LOSS RESULTS FOR PROBLEM 21* 
(INCLUDING 2 COMPARATIVE MODELS) 

Eddy current 
loss(W) 

Total 
loss(W) Model 

Plate 1 Plate 2 

Hysteresis 
loss(W) 

Problem 21* 0.669 4.626 1.531 6.826 
Compar. 1 3.720 3.720 2.440 9.880 
Compar. 2 0.685 0.685 —— 1.370

Notes: 
(a)Problem 21*: plate1: magnetic; plate2: non-magnetic; 
(b)Comparative model 1: plates1 and 2: magnetic; 
(c)Comparative model 2: plates1 and 2: non-magnetic. 

The presented results are summarized as follows: 
(1) For Problem 21, the hysteresis loss, as a part of total stray 

loss, can not be neglected, even if the flux densities in the 
air region are small; the skin effect must be taken into 
account; the proposed method to deal with the hysteresis 
loss problems in electrical engineering is effective[11]. 

(2) For Problem 21+, the 3-D calculated loss results are in 
good agreement with the measured ones, which detail the 
loss distributions and are really important for EM design. 
However, 2-D results of Problem 21+are useless.  

(3) For Problem 21*, the hybrid model clearly shows the loss   
behavior of both the magnetic and non-magnetic parts, 
which is concerned by the designers. 
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Fig. 1 Disk trajectory using BEM altered Green’s function. 

Working Transient Eddy Current Problems with Velocity using Modified Green’s

Functions and Impedance Matrices

Kent R. Davey
 2275 Turnbull Bay Rd., New Smyrna Beach, FL 32168-5941, USA

A bstract - It is known that boundary element techniques ca n

analyze problems with veloci t y  by modifying the Green’s

function. Technically, the solution is only applicable if media in

either the stationary or moving reference frame do not vary in

the direction of motion. It is hypothesized that these solutions

can be used to predict motion not only when the above condition

is not met, but also during a transient. It is further conjectured

that knoledge of the impedance matrix for this system at the

excitation frequency can be used to simulate the transient. Team

problem 28 is used to test this hypothesis. 

Index terms - Transient, eddy current, Green’s function,

impedance matrix. 

I. INTRODUCTION

Nearly all t r ansient field problems are solved using a time

stepping procedure in which the incremental are either explicitly

or implicitly determined. Velocity effects are integral to the field

equat i o ns and are treated as such. Burnet Fauchez  [1]was

perhaps the first  to  em ploy boundary element methods with

modified Green’s functions to solve constant velocity problems

in  w h ich either the laboratory or moving frame remained

u n ch anged in the direction of travel. Part of the intent of th is

manuscript is to determine how it performs when changes occur

in the direction of movement, and wheth er it can be applied to

a transient problem. 

A second intent o f  t h i s  p aper is to examine the use of

i m p ed ance matrices in problems of this nature. The use o f

impedance matr i ces has been explored [2], but not for transient

eddy current problems. The matrix relates th e  elements of the

problem in a mixed circui t  sense. Velocity is added in the

computation of the current for this transient problem. 

IV. TRANSIENT PREDICTION USING BEM WITH  T H E  ALTERED

GREEN’S FUNCTION

Consider pr ed icting the force on the aluminum disk using

a parametric analysis for a range of vertical p o si t ions and

velocities. A double iteration was used to determine that the

velocity ranged between -0.235 and 0.305 m/s, while the height

varied from  th e  s tarting position at y=3.8 mm up to 20 mm. A

simple nested do loop was employed as follows:

for v = vmin : vmax (60 steps)

for y = ymin:ymax (20 steps)

Compute force on the disk at 50 Hz

end;

end;

Next a divariate spline was employed to construct a continuous

function of the disk force F(v,y). A  Runge Kutta algorithm was

then used to mod el  th e  disk position as a function of time,

fitting the equation

(1)

The two unknowns in th e Ringe Kutta algorithm were y and v

as a function of time. T h e  J aco b ian of this system was

employed to speed up the algorithm,

(2)

Computation of the spline fit, the derivatives, and  the Runge

Kutta algorithm requires 1 . 9 5  s  on a 2 GHz Pentium IV. A

comparison of the com p uted height and that from the

measurement is shown in Fig. 2. 

V. TRANSIENT PREDICTION USING IMPEDANCE MATRICESManuscript received Nov. 1, 2002. K. Davey (386) 426-1215, fax (253)

540-8788, email kdavey@Neotonus.com.
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Fig. 2 Disk movement predicted using impedance matrices. 

An impedance matrix can be determined for any problem by

imposing a current of uni t  v alue in any region and computing

the flux linkage with any other region at  t he frequency of

interest. Consider numbering the conductors as anno t at ed in

Fig. 1. By it eratively following this procedure for each

conductor, an  eq u at ion governing the current induced in  the

solid disk results as

(3)

With sinusoidal excitation, and the disk moving with velocity

v, the current i3 is

(4)

The coenergy for this system is 

(5)

Force is the rate of change of this with respect to displacement.

Both the current i3 and the mutual inductances have a y directed

dependance.

(6)

Using this relation, the force on the disk can be written as 

(7)

Here U denotes real part, and the rms value of current must

be used for coils 1 and 2 Equation (20)  to  co m p u te the disk

trajectory with time yields the result shown in Fig. 3. Note that

the timing of the peaks for both the  m o dified Green’s function

approach, also plotted, and the impedance approach maintain  a

close relation to one another. 

These calculat ions require 5.04 s on a 2 GHz Pentium IV,

while the impedance matrix requires ab out 15 minutes to

generate with a boundary element code. 

VI. CONCLUSIONS

Both the modified Green’s function approach and the

impedance matrix approach model the disk transi ent reasonably

well. This is especi al ly true when the sources of error are

considered.

1. Both approaches use the averag e  f o r ce during one complete

waveform. Small differences should  b e  expected since the disk

movement during 20 ms is not insignificant. 

2. Slight tilting and lateral movement are expect ed  d uring the

actual experiment. Such affects are i gnored in the computations.

Of the two approaches, the modifi ed  G reen s function is to be

preferred since it circumvents the req u i r ement of taking

analytical derivatives of impedances. Differentiation is always a

source of additional error. The full paper wi l l  also look at a

finite element time step solution. 
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Surface Current Reconstruction Using Magnetic Field Tomography
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Technische Universitaet Ilmenau, Dept. Electrical Engineering and Information Technology
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Abstract The identification of characteristics or the reconstruction
of the shape of free boundaries are inverse problems arising in industrial
applications, e.g. in magnetic fluid dynamics. We have studied the
reconstruction of interfaces between two conducting fluids using external
magnetic field measurements which were applied to a highly simplified
model of an aluminum electrolysis cell. Because semi-analytical solutions
for the electrical and magnetic field are known numerical simulations
(FEM or BEM) can be evaluated. Measured magnetic fields are available
due to an experimental setup of the object under consideration.

We propose a new TEAM benchmark problem for evaluation of inverse
methods which can be applied to the reconstruction of the surface current
distribution representing the interface between the two fluids.

INTRODUCTION

There is a variety of problems in material processing where it
would be useful to know the electrical conductivity profile of a
single fluid or a multiphase flow. The knowledge of the position
of the interface between good conducting molten aluminum and
poorly conducting liquid cryolite is important to prevent
unwelcome instabilities in aluminum reduction cells [1-3]. But
conductivity distributions are also of interest in glass melting
furnaces or metal-slag interfaces in steel and iron making.

In a previous work [5] we have demonstrated how the
concept of Magnetic Field Tomography, which has been
successfully applied to the source localization and source
reconstruction in biomagnetism [6], can be used to detect the
interface between fluids with different electrical conductivities.
In particular, we have shown that the external magnetic field
generated by the electrical current flowing through a cylindrical
volume conductor (a highly simplified model of an aluminum
reduction cell) provides sufficient information to reconstruct the
shape of the interface between two fluids.

PHYSICAL MODEL

If we consider typical figures of aluminum electrolysis cells
it must be noticed that the cross section has usually a length of a
few meters, whereas the interface displacement is very small
compared to the lateral extent of the system. The applied high
electrical currents (about 100 kA) will result in a interface
displacement of the order of several centimeters. But from
industrial practice is known that already such small interface
displacements can disturb significantly the operation of the cell.

The simplified model of an aluminum electrolysis cell we
have considered is shown in Fig. 1. Two fluids with different
electrical conductivity �

1 and �
2, respectively, are situated in a

long cylinder with the radius R. The cylinder wall is non-
conducting. At the top of the cylinder a homogeneous electrical
current density J0 is impressed.

Fig. 1. Physical model with a non-axisymmetric interface, impressed
homogeneous current density J0 and magnetic field sensor positions.

If the interface is flat, the current density J is homogeneous
and the total electrical potential

�
is equal to the electrical

potential
�

0 = -Jo �
� �

, induced by the impressed current density
Jo. As soon as the interface is deformed (due to interfacial
waves or an external forcing), the current density J will become
inhomogeneous near the interface. Then the inhomogeneity of J
can be represented by the perturbation of the current density j
which induces a perturbation of the electrical potential � .

The problem is now to reconstruct the interface shape using
the magnetic flux density B measured outside the cylinder.
Non-axisymmetric perturbations of the fluid interface lead to
perturbations of the magnetic field outside the cylinder which
can be measured and used for the interface reconstruction.

FLUID-MECHANICAL CURRENT FLOW MODELING

If we consider a long cylinder containing two incompressible
fluids with different densities, an equation for the velocity
potential can be derived [1]

( ) tjjmzk
mnmii

mnerkJC ω−α+−=φ (1)

where the constants Ci can be complex; Jm is the Bessel

In terface
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function of the first kind, kmn = ymn/R, ymn is the n-th solution of
the equation J’m(r) = 0 at m>0 and (n+1)-th solution at m=0.
Using (1) the interface perturbation η(r,α) can be derived

( ) ( )∑∑
=

α

−=

η=αη
N

n

jm
mnmmn

M

Mm

erkJr
1

, (2)

The value n is called the radial mode number, whereas m is
the azimuthal mode number. The validity of the interface
representation described by (2) is restricted to small amplitudes
of interface oscillations.

MAGNETIC FIELD MODELING

The main difference for magnetic field modeling is that we
will assume non-oscillating interface functions η(r,α) which are
caused by external mechanical forcing.

The interface perturbation η leads to an inhomogeneous
distribution of the total electrical current density J in the fluids
which can be written as J = -J0 ez + j, where J0 is the impressed
current density and j the perturbation of this current density.
The total electrical potential is then � = � 0+ϕ, where ϕ is the
perturbation of the electrical potential.

Similar to the fluid flow modeling the perturbed potential can
be calculated approximatively based on a linearization of the
boundary condition for the potential on the interface (at z = h/2)

1 2 0
2 1

1 1

2

h
J zη

κ κ
 

Φ − Φ = ⋅ ⋅ − = 
 

(3)

This means, that only small interface deviations from the
plane at z = h/2 are allowed.

We finally end up with the magnetic field b related to the
interface perturbation (4):
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MAGNETIC FIELD MEASUREMENTS

Magnetic field distribution outside the cylinder is measured
be means of a set of 16 sensors (fluxgates) placed on a ring
which can be shifted vertically (Fig. 3). Different interfaces can
be generated by modifying magnitude and frequency of the
pneumatic shaker. Depending on magnitude and frequency of
the mechanical excitation different stable oscillations of the
interface, i.e. the liquid metal surface, can be generated (Fig. 4).

A transparent plastic cylinder (height 100 mm, diameter 50
mm) filled with Galinstan (metal mixture of Ga, In, and Sn,
with conductivity � 2 = 3.6⋅106 S/m, liquid at room temperature)
and the electrolyte KCL (conductivity � 1 = 10-2 ... 102 S/m) was
used. A current of I = 1A was uniformly impressed to the
electrode covering the complete top of the cylinder.

Fig. 3. Experimental setup for the magnetic field measurements at the
cylindrical object filled with liquid metal (Galinstan) and KCL as electrolyte.

Fig. 4. Optical snapshots (negatives) of interface modes which have been
observed in an experiment after mechanical excitation.

INTERFACE RECONSTRUCTION

Using the experimental setup (Fig. 3) different surface shapes of
the liquid metal can be generated, their shapes can be observed
applying optical or laser techniques. For numerical simulations
the interface functions η(r,α) can be described by superposition
of Bessel´ sand trigonometric functions. To reconstruct these
surfaces the parameters ηnm have to be estimated using the
magnetic field distribution measured in a set of grid points
outside the cylinder. Thus, the number of optimization
parameters depends on the chosen interface mode.
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Abstract �The numerical simulation has become an important 
technology in various research and development fields. The finite 
element method (FEM) is a popular technique of computational analyses 
among various numerical methods which are aided by the EWS and the 
PC. The FEM will require the pre-processing to discretize the analyzed 
domain into triangular elements and the post-processing to visualize the 
results. Taking account such backgrounds, it is necessary to educate the 
numerical analysis at universities. In the paper, the authors will present 
the implementation of the education system including prepost-processors 
and solver for the learning FEM based on server client model using 
JAVA.  

INTRODUCTION

We have developed the highly interactive and portable pre-
processor [1] for 2-D FEM analysis. Moreover the automatic 
mesh generator [2] has been implemented for the linear 
induction motors (LIM). Since the tools were made the best 
use of Graphical User Interface (GUI) in the environment of 
the X window System on the UNIX operating system, even a 
novice user can make the discretized domain easily. We have 
also developed the post-processor [3] to visualize calculated 
results.  

Recently an object-oriented programming language 
“Java” has been widely adopted in the computer science. 
There has been some report on numerical analysis using Java 
[4]. However that is not an available application but only 
benchmark test. 

In this paper, we will present the new education system 
that is all in one package, based on server client model using 
Java. The system is adopted to a practical curriculum of a 
student laboratory in our Department of Electronics, Saga 
University. 

DEVELOPMENT OF EDUCATION SYSTEM FOR                                               
LEARNING FINITE ELEMENT METHOD

Fig. 1 shows the system configuration of the present 
education system. The system is based on the server client 
model for the load distribution. The flow of numerical 
analysis using the system is as follows. (1) A student uses a 

client computer for the input data of model for analysis. (2) 
The analyzed domain is discretized by the Delauney-Volonoi 
triangular method on the client computer. (3)The boundary 
conditions and parameters of material are inputted. 
Subsequently, since the JAVA Applet program is not possible 
to create the data file at the local computer, the discretized 
domain data is sent to the server computer through the 
network. (4)The coefficient matrix is computed. (5)The 
“Gauss Elimination Method”, that is coded by JAVA Applet, 
solves the Rayleigh-Ritz matrix equation. At the last step, 
(6)the numerical results are visualized on the client computer 
using JAVA Applet, such as equipotential lines, electric field 
vector and magnetic vector. If the discretized domain data 
stored in the server is transmitted to the client Applet through 
the network, it is able for student to simulate the 
electromagnetic fields using the previous discretized domain 
data.

Java Applet (client computer)
1. Input data of model for analysis
2. Discretized domain using 
    Delaunay-Voronoi triangulation

5. Solver

3. Input data of boundary conditions 
    and parameters of material

Java Application (server computer)

4. Compute coefficient matrix 

Discretized
domain data

 Linear

Non-Linear

6. Visualization Discretized
domain data

Save discretized 
domain data

Fig. 1. System configuration 

Fig. 2. Operating window of present system using Netscape Navigator 

Button for pre-processor

Button for solver or  
post-processor
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Fig.2 shows the snapshot of the implemented education 
system in case of using Netscape Navigator. The buttons for 
pre-processor, such as inputting data of model for analysis or 
boundary conditions, are arranged at the top of the window. 
The post-processor buttons, such as illustration the 
equipotential lines, electric field vector and magnetic vector, 
are located at the bottom. 

(a) Initial two domains        (b) Making a new domain based on AND 
operation 

(c) Making a new domain based on OR operation 

Fig. 3. View of making a new domain from two domains   

Number of Nodes 
1,000 2,000 3,000 4,000

Delauney(Client1) 1.87 2.72 3.84 6.02
Gauss(Client1) 29.79 245.02 837.53 1958.34

Delauney(Client2) 0.87 1.39 1.80 2.38
Gauss(Client2) 5.01 37.91 132.47 320.87
Gauss(Server) 5.16 32.37 107.21 257.06

(sec.) 

Client1 CPU:Dual Pentium III Processors 450MHz, Memory:512MB 
         OS:Linux (Kernel 2.2.18) 
Client2 CPU: Pentium IV Processor 1.8GHz, Memory:512MB 
         OS: Linux (Kernel 2.4.18) 
Server  CPU:Dual Pentium Xeon  Processors 1.7GHz, Memory:2GB 
         OS:Linux (Kernel 2.4.18)

Fig.3 shows a generation method of new domain from two 
objects based on the “AND” or “OR” operation. The ellipse 
and square exist in Fig. 3 (a). The result of “AND” operation 
at two objects shows in the Fig. 3 (b). Fig. 3 (c) illustrates the 
generation of new domain based on “OR” operation at two 
objects.

Table.I describes CPU time for processing each discretized 
domains, whose numbers of nodes are 1000, 2000, 3000 and 
4000. It takes very short time to compute the Delauney-
Volonoi triangular even if the low performance computer 
(client1) uses. However, it takes long time to execute Gauss 
Elimination Method on the client1. Using client2 or server, 
the CPU time is reduced approximately by 85% than client1.

CONCLUSION

We have implemented the education support system 
including the prepost-processors and solver for learning the 
FEM based on the server/client model through the network. 
Nevertheless students use the JAVA Applet program on the 
client, it is possible to save the discretized domain data on the 
server.   

The present system has been adopted to a practical 
curriculum of a student laboratory in our department. It is 
found out that the present education system will support the 
understanding the numerical analysis and FEM satisfactorily.  
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Abstract--  In this work we propose a multi-objective analysis
for TEAM workshop problem 25. In order to obtain the Pareto
frontier, the objective functions are replaced by approximations.
A straightforward method, based on the use of approximations, is
used to obtain a Pareto set.

Index Termsó  Approximation techniques, multi-objective
optimization, finite element method.

I. INTRODUCTION

TEAM Workshop has two problems on electromagnetic
device optimization: Problems 22 and 25. The first one deals
with the optimization of superconducting magnetic energy
storage (SMES) arrangement [1] and the second one deals
with the Optimization of Die Press Model [2].

The optimization of superconducting magnetic energy
storage (Problem 22) has already been solved  as a multi-
objective problem [3].

The Optimization of Die Press Model (Problem 25) is
always analyzed as a single objective problem. There are
several approaches on the optimization process. The first work
[4] is a very interesting analysis on the use of the simulated
annealing method on a electromagnetic device and the
objective function was not approximated. There are other
works that use approximations of the objective function [5].
This is due to one of the main characteristics of this problem:
the objective function is very flat around the global minimum,
so a good approximation could save a lot of computational
effort.

The optimization of die press model has another nice
characteristic, without any change on the geometry of the
problem: it could be solved as a multi-objective problem.

II. A BRIEF PROBLEM DESCRIPTION

The geometry of Problem 25 is shown on Fig.1. The goal is
to obtain a radial magnetic induction distribution on a
specified path. Four parameters (R1, L2, L3 and L4) could be
changed in a specified range. The coils are fed on DC and
there are two ampere-turns conditions. In this paper, we will
deal only with the small ampere-turn (4253 AT). So, the radial
magnetic induction must be equal to 0.35 T along the line e-f.

This wok was supported by CAPES-COFECUB

Fig. 1.  Team Workshop problem 25, model of die press: enlarged view[1,4]
 The objective function is defined as:

( ) ( ){ }� +=
=

n

i
yxioyipxioxip BBBBW

1

22 (1)

where the subscript p denotes a calculated value and the
subscripted o the specified value. The number of points (n) is
equal to 10.

There are two important parameters (or indexes) on the
problem description: the maximum deviation on the amplitude
and the maximum error on the angle of magnetic induction
vector. They are defined to compare the optimization methods.

The maximum deviation on the amplitude is defined as
follows:

o

op
B B

BB
= maxmax x100     % (2)

and the maximum error on the angle of magnetic induction
vector is calculated by:

BoBp= maxmax (3)

The objective function measures the homogeneity of the
magnetic distribution. The parameters Bmax and max measure
the local quality of the induction magnetic distribution.

III. A MULTI-OBJECTIVE APPROACH

On  TEAM Workshop Problem 25, the minimization of (1)
is performed and then indexes are calculated. It is possible that
we can lose some nice solutions, which have low indexes, but
a less homogeneous distribution.

TEAM Workshop Problem 25: a multi-objective analysis

Luiz LEBENSZTAJN
LMAG LaboratÛrio de Eletromagnetismo Aplicado, Escola PolitÈcnica da Universidade de S„o Paulo

 05508-900 ñ S„o Paulo/SP ñ Brazil
leb@pea.usp.br

Jean-Louis COULOMB
LEG:  Laboratoire dí…lectrotechnique de Grenoble  - INPG/UJF- CNRS UMR 5529 ENSIEG, BP 46, 38402

Saint Martin díHËres France
Jean-Louis.Coulomb@leg.ensieg.inpg.fr

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



 So, we propose to analyze the "Optimization of a Die
Mold" as follows: it is necessary to obtain a magnetic
induction radial distribution on a specified line (e-f), with the
following attributes:

1- the magnetic induction distribution must be as
homogeneous as possible;

2- the local deviation on the magnetic induction amplitude
must be minimized;

3- the local deviation on the magnetic induction vector
angle must be minimized.

Thus, on this approach: instead of minimize (1) and then
calculate (2) and (3), a multi-objective analysis will be carried
out. We are dealing with another concept: usually there is not
a solution, but a set of solutions. They are superior to the
others, when all the objectives are taken into account: this set
of solutions is called the Pareto-set or the non-dominated set
[6].

One possible solution to a multi-objective problem is to
create a new objective function, which is a weighted sum of
the all the objectives. If the weights are changed, then a new
solution could be obtained and all the Pareto-set could be
obtained. This approach can solve several problems, but it has
a high drawback: when the Pareto frontier is non-convex, the
method is not able to capture all the solutions.[7].

IV. METHODOLOGY

In this work, we will use a methodology based on
approximations, proposed by Wilson [7]. It is a
straightforward method and the first step is the replacement of
the objective functions with a set a low computational cost
approximations.

In order to compute the Pareto-set:
1. Kriging approximations [8] are performed based on a

regular 13x13x13 grid to replace the objective functions;
2. The design space is explored and all the approximated

objective functions are evaluated.
3. Each function is then scaled between zero and one, as

follows:
f1 = (f1-min(f1))/ (max(f1) -min(f1))  (4)
4. A function Fi is defined for each explored point:
Fi= [1 - 

ji
max  (min( f 1i-f1j ; f 2i-f2j  Ö .. ;f Ni-fNj ;))] (5)

where f1 is the first objective function and f2 is the second
objective function.

This function Fi is greater or equal to one for every Pareto
design. The value Fi for dominated designs is always less than
one.

V. RESULTS

The method was applied to TEAM Workshop problem 25
[1, 4]. The magnetic field computations were done with finite
element analysis [9]. Four geometric parameters can be varied
[1,4], but the significant parameters showed to be R1, L2 and
L4 [5]. Approximations were then constructed on the
parallelepiped [5, 9.4]*[12.6, 18]*[4, 19].

Fig. 2 shows the Pareto Set and the coordinates of the

Global Error and the Local Errors of the magnetic induction
(amplitude and angle).
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All the actual objective functions are positive. Nevertheless,
two approximation functions (the Global Error and the Local
Error on the Angle) have some very small negative values on
the Pareto-Set. This is due to some oscillations on
approximations functions, because the actual functions are
very flat. Fig. 2 shows a very important result: Problem 25 has
several points with high homogeneity distribution and low
local errors on the magnetic induction.

VI. CONCLUSIONS

A multi-objective analysis to TEAM Workshop Problem 25
was proposed. It is a straightforward method and low cost
method, based on approximation functions and it is a very
good starting point to the solution of real-world problems.
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Abstract � The optimization of superconducting magnetic energy 
storage (SMES) is performed by means of different stochastic methods: 
genetic algorithms, genetic algorithms with response surface, simulated 
annealing, improved simulated annealing, tabu search and new tabu 
search. An analytical comparison among them is performed. Finally, 
results on different methods are discussed.   

INTRODUCTION

Superconducting magnetic energy storing systems 
consisting of a single superconducting solenoid coil offer the 
opportunity to store a significant amount of energy in 
magnetic fields. However, such arrangements usually suffer 
from their remarkable stray fields. A reduction of the stray 
field can be achieved if a second solenoid is placed outside 
the inner one, with a current flowing in the opposite direction. 
A correct design of the system should then couple the right 
value of energy to be stored with a minimal stray field. This 
optimal design problem has been accepted as a benchmark 
problem and inserted in the list of TEAM Workshop 
problems [1]. 

The aim of this type of problem is to test several 
optimizations methods. These algorithms include simulated 
annealing (SA), improved simulated annealing (ISA), genetic 
algorithm (GA), Hu’s tabu search (HuTS), universal tabu 
search (UTS), and an original new tabu search (NTS) 
presented in a companion paper [2]. 

The first section presents the SEMS problems, the second 
section presents different stochastic studied methods and 
finally results and comparison are summarized out.  

SMES PROBLEM

This problem consists of determining the optimum design 
parameters of superconducting magnetic energy storage 
(SMES) device [1]. The device is composed of two 
axisymmetric concentric coils with current densities equal to 
22.5 A/mm² in opposite direction.  

Besides usual geometrical constraints, there is a material 
related constraint: the given current density and the maximum 
magnetic flux density value on the coil must not violate the 
superconducting quench condition which can be well 
represented by linear relationship. 

The objective function (OF) of this problem has to take 
both the energy and the stray field requirements into account, 
which can be done using a weighted sum as given in (1) 
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Bstray  is evaluated along equidistant points at a distance of 
10 meters, the problem investigated here is the three variables 
continuous case.  

GENETIC ALGORITHM

GA [3] is an iterative procedure which maintains constant 
size of population of candidate solutions. During each 
iteration, called a generation, the individuals in the current 
population are evaluated. By a randomized selection 
procedure a new population is selected that ensures that the 
expected number of times an individual is chosen is 
approximately proportional to its relative performance. In 
order to search other points in the design space, the two 
genetic operators’ crossover and mutation are applied. To 
maintain the focus of the processes on the best solution found 
so far, an elitist approach can be built into the selection 
process. 

Genetic algorithm with new stop criterion 

The optimization process is performed in two steps. In the 
first step, the standard GA process is performed until the error 
between the objective function and its approximation is 
sufficiently low. In the second step, the approximation of the 
objective function is used to locate quickly the global 
optimum point in the confidence domain of the 
approximation function using recursive canonical analysis 
[4].

SIMULATED ANNEALING 

SA is a procedure for optimization that has been firstly 
proposed to solve complicated combinatorial problems. It has 
proved to be an effective and powerful global optimization 
algorithm in many combinatorial optimization problems such 
as the traveling salesman problem. It is based on an analogy 
with thermodynamics where a system is slowly cooled in 
order to achieve its lowest energy state. The main stochastic 
rule used in SA is the Boltzmann probability [5]. 
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Improved simulated annealing 

The improved SA algorithm used in this paper is derived 
directly from the one applied to multimodal functions of 
continuous variables [4]. 

A new method to determine the step vector is proposed 
here, based on the proposition of Hu [6]. The steps lengths are 
taken from a list of realizable steps computed using [6]. The 
search starts with large steps in order to cover all the search 
space. Decreasing the step vector and the control parameter, 
the search is performed in a smaller space. 

Simulated annealing and auto-tuning steps 

In standard SA, during the constant temperature phase, the 
step vector is periodically adjusted in order to be well fitted 
on OF variation. After thermal equilibrium, the temperature is 
reduced. The step vector is changed a certain amount of times 
that is set by the user. This number depends on the 
optimization problem. Therefore, a more efficient criterion is 
searched to determine if the thermal equilibrium is reached. 

The criterion proposed here depends on the step vector. In 
optimization process, it is preferable to keep the ratio between 
the numbers of accepted and rejected configurations equal to 
1 in order to explore all the space search. Therefore, the step 
is changed as proposed in [5]. The process of thermal 
equilibrium is stopped when the step becomes very small 

TABU SEARCH 

TS is a metaheuristic method recently developed by Glover 
specifically for combinatorial optimization problem. It guides 
the search for the optimal solution making use of memory 
systems, which exploit the history of the search 

Among all the visited solutions the best one is chosen. This 
strategy can lead to cycling on previously visited solutions. 
To prevent this effect, the algorithm set as tabu moves that 
had led to improvement of the objective function for a certain 
number of iterations, depending of the tabu list size. The 
performance of a TS algorithm depends on the size of 
neighborhood of a solution, and on the number of iterations 
for which a move is kept as tabu. There are two fundamentals 
structure of TS algorithms implemented here: Hu’s TS 
(HuTS) and Universal TS (UTS), they are described 
respectively in [6] and [7].  

New Tabu Search  

In this proposed TS method, points are generated using 
normal law, the tabu list contains all points and a prohibited 
zone around each point. The size depends on the value of the 
objective function and decreases as the number of iteration 
increases. Alternation of intensification and diversification 
phases allows finding the global optimum with a good 

accuracy. More details are available in a companion paper 
[2].

RESULTS AND COMPARISON

The SMES problem [1] is optimized using the previously 
described stochastic algorithms. 

Table I give the comparison of the computed results using 
the previously described stochastic standard and improved 
algorithms. From these results it can be seen that the 
improved algorithms use less iterations than the standard one 
and reach almost the same optimal. The time is expressed as 
the number of computations of the objective function (OF). 

TABLE I. OPTIMIZATIONS RESULTS

Method OF B²stray Energy R2 h22 d2 Time 
Unit - 10-6 T2 106 J m m m - 
GA 0.090 7.668 179.19 3.04 0.24 0.386 2400 
GA+RS 0.0862 7.775 180.02 3.084 0.238 0.395 945 
SA 0.087 7.59 179.36 3.078 0.237 0.39 5025 
ISA 0.0864 7.79 179.95 3.089 0.246 0.381 859 
HuTS 0.0864 7.67 179.79 3.08 0.246 0.381 3821 
UTS 0.0868 7.7 179.75 3.077 0.245 0.385 901 
NTS 0.0864 7.78 179.99 3.08 0.254 0.37 1800 

CONCLUSION

Improved version of standard stochastic algorithms have 
presented and tested on the SMES problem with three 
parameters. A comparison of the different optimization 
methods has been performed. Improved algorithms use less 
time and provide better solutions than standard ones. 
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An NDT pulse shape study with TEAM Problem 27 
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Abstract- This paper performs a study of the effect of pulse shape 
on signal amplitude for TEAM Problem 27 – Eddy Current NDT 
and Deep Flaws.  A procedure is described to reduce the 
discretization errors in the finite element mesh. The results are 
compared with experimental waveforms. 

INTRODUCTION

TEAM problem 27 was originally introduced at the 
TEAM Workshop in Rio de Janeiro, Brazil in 1997.  
The problem geometry consists of a round hole through 
a conducting (aluminum alloy) plate.  Partway down the 
hole is a flaw.  As stated in the problem description [1], 
“The aim of this problem is to be able to optimize the 
dimensions of the coil and the excitation current to have 
the highest level of the signal as possible”.   

Previous work on this problem calculated 
differential flux densities horizontally and vertically for 
various size flaws, but using a sinusoidal excitation [2]. 
Other work also included the design of a genetic 
optimization algorithm to design a well adapted sensor 
[3].  More recently an algebraic multigrid approach to 
this problem was presented [4]. 

This paper performs a study of the pulsed current 
turn-off time to aid in selecting the optimal pulse shape. 
These results are compared with the experimental 
results given in [1].  The analyses were performed using 
the MagNet transient analysis software from Infolytica, 
which is based on the T-� method [5]. 

PROBLEM SETUP

The detection of flaws and cracks through the use 
of  the finite element method is notoriously mesh 
sensitive.  For this reason the problem was setup so that 
meshing errors could be removed from the solution by 
gathering results with the flaw on opposite sides of the 
screw hole.  In one analysis the flaw is on the left side 
of the screw hole and in the subsequent analysis it is on 
the right side.  The same mesh is used for both analyses, 
with only the material properties of the flaws changing 
(from air to aluminum-alloy and vice-versa). The 
Horizontal Differential Flux Densities (HDFD’s) from 
these two analyses are then averaged.  This method 
removes much of the discretization errors and has the 
added advantage of reducing the other numerical errors 
in the signal by a factor of two (due to the averaging 
step).  There is still a small discretization error because 
the T-� formulation uses different basis functions in 
conductor (edge-based basis functions) and 

non-conductor (node-based basis functions), however 
this error appears to be much less significant.  The 
magnetic flux densities in the experiment were 
reportedly measured using Hall effect sensors as 
described in TEAM problem definition.  This is 
simulated by sampling the flux density at specific 
points.  Thus the HDFD is calculated from the analyses 
as follows: 
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where is Br
R and Br

L are the radial components of the 
flux density from the analyses with the flaw on the right 
and left hand sides of the hole, respectively. The 
original TEAM problem proposal [1] specifies the radial 
position of the Hall sensors at r0 = 5 mm, but their 
vertical position is not specified.  A plot of flux density 
as a function of vertical position indicates that the 
strongest signal is found at the base of the coil or at 
z0 = 0.5mm above the plate. 

DETERMINATION OF THE TURN-OFF RATE

The TEAM problem proposal suggests either a 
time-harmonic source or a pulsed source, with the pulse 
consisting of a turn-off of a coil carrying a specified 
current.  This latter method has advantages because the 
source waveform is effectively composed of many 
frequencies, instead of a single frequency.  Since the 
optimal frequency for flaw detection depends on the 
size and depth of the flaw, a single pulse can, in 
principle, generate a strong signal for a wide variety of 
flaws.  The strongest signal would be produced if the 
current were turned off instantaneously, however this 
would require an infinite voltage.  To determine a 
practical turn-off rate, a series of transient simulations 
were performed using a pulse with varying turn-off 
time.  Fig. 1 shows the coil current at each time step.  
This same waveshape was used for different time steps 
ranging from 5 µs to 60 µs.  The finite element mesh 
contained 198,212 tetrahedra, and for each transient 
time step there were 184,362 unknowns in the linear 
system of equations, which were solved using an 
average of 613 conjugate gradient iterations.  A 
transient solution for 10 time steps required 
approximately 40 minutes on an AMD Athlon 2000+.   
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The result is the peak signal amplitude as a function 
of the turn-off time as shown in Fig. 2 for the horizontal 
flaw with length l=4mm and height h=1mm.  This 
behavior is approximately modeled by a quadratic, also 
shown in the figure, and it can be seen that turn-off 
times less than 50 µs do not yield a significant gain in 
signal amplitude.   

 COMPARISON WITH EXPERIMENT

The authors [1] state that their current generator has 
a bandwidth of 10kHz, but give no other details as to 
slew rate or peak voltage.  To generate waveforms to 
compare with the experimental data in [1], simulations 
were performed from 0 to 2 ms using a time step of 25 
µs for the first 400 µs after the start of current turn-off, 
and 50 µs subsequently.  The turn-off time was 50 µs 
(two time steps). The zero of the experimental data was 
aligned with the time instant at which the current first 
begins to turn-off, although a better fit to the 
experimental data could be obtained by adjusting this 
slightly.  Overall this method agrees well with 
experiment results as shown in Fig. 3, where the 
experimental data is shown as individual points and 
simulation results are the solid and dashed lines.  Note, 
however, that the simulation achieves the larger signal 
for the horizontal flaw (l=4,h=1) while experimentally a 

larger signal was obtained for the vertical flaw 
(l=1,h=4).  Also note that the oscillations in the data 
indicate an experimental error of at least 5%.  

 DISCUSSION AND CONCLUSION
A study to determine an optimal turn-off rate for a 

pulse-driven NDT sensor has been performed. It has 
been shown that good results can be obtained in 
reasonable computation times.  This is useful both in 
terms of demonstrating that optimization is feasible 
using transient analyses, as well as in providing a 
baseline for comparing with experimental results. 
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Fig. 3. Differential flux density response 

Fig. 1. Current waveform 

Fig. 2. Differential flux densities for various turn-off rates.
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Abstract— This paper presents Optimise, a computational
optimization environment tool for education in electrical en-
gineering. Optimise has been developed using software en-
gineering process and object-oriented programming philos-
ophy. This educational tool incorporates a set of determin-
istic and stochastic methods and also a set of computational
intelligence techniques. Optimise offers a friendly interface
and allows the students to practice the theory learned to
verify and compare the features of the optimization meth-
ods. A general view of the software is presented describing
its modules and class libraries. Some optimization prob-
lems are discussed to illustrate the flexibility and power of
the Optimise as an educational tool.

Introduction

Many undergraduate courses in electrical and electronic
engineering, control engineering etc., are incorporating the
subject of optimization in their curricula. This fact is cer-
tainly due to the need of using numerical optimization tech-
niques in engineering. The optimization methodology pro-
vides a rational and scientific support in a decision-making
process. Although some authors have developed educa-
tional tool software, such as to understand electromagnetic
scattering phenomena [1] and in the analysis of electromag-
netic fields [2], there are few, if none, software in optimiza-
tion conceived for that purpose.

Optimise has been developed for Windows using a soft-
ware engineering process and object-oriented programming
philosophy. The software has a friendly interface and is ca-
pable of tackling restricted and irrestricted linear and non-
linear problems using deterministic (BFGS, penalty func-
tions, ellipsoidal algorithm etc.) or stochastic (genetic al-
gorithm) methods and a combination of both. Optimise
has also a module of computational intelligence techniques
to generate a multidimensional function that can be used in
optimization when the objective function is not known and
a data set is given. There is also a numerical library that
implements mathematical entities like vector and matrix.

General View

A general optimization problem can be stated mathe-
matically as:

min F (�x) ∈ � (1)

subject to:



gi(�x) ≤ 0 i = 1, . . . , m
hj(�x) = 0 j = 1, . . . , n

A · �x ≤ �b

A · �x = �b
xmin

k ≤ xk ≤ xmax
k k = 1, . . . , p

(2)

where �x is the vector of variables, F (�x) is normally called
objective function, gi (�x) and hj (�x) are the inequality and
equality constraints respectively.

Optimise has been developed following a software en-
gineering process, consisting of requisites specification,
object-oriented analysis, software design, testing and cod-
ing. The software was coded in C++ for Windows.

The use case view of the requisites specification to ac-
complish (1) and (2) is illustrated below.

Fig. 1. Use Case View of the Requisites Specification.

It can be seen that Optimise also communicates with
external programs. This is particularly important when
the objective function (1) implicitly involves the solution of
common engineering problems such as an electromagnetic
field analysis, a circuit analysis, a control analysis etc. In
such cases Optimise would invoke an external program to
solve the specific engineering problem that is part of the
optimization process.

The class libraries conceived at the design process phase
are shown in Fig. 2. Details of the class hierarchy will be
given in the full paper.

User Interfaces

The main window of the Optimise is illustrated in Fig.
3. The interface presents buttons to define the free param-
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Fig. 2. The class libraries.

eters, the objective functions and its constraints, to con-
figure and start the optimization process, to train a neural
network, and to simulate the objective function provided
that a set of values for the free parameters.

Fig. 3. Main window of the Optimise.

The objective functions are divided in three categories:
(i) analytical objective function, which is described by
means of an analytical expression relating the free parame-
ters with the objective function, (ii) approximate objective
function, which is obtained by training a neural net with
a data training set, and (iii) external objective function,
which is partially or entirely evaluated by another program.

To initiate an optimization process, the user first defines
the optimization model, that is, the number of free param-
eters, its names and ranges. Next, (s)he selects the type
of objective function. Depending of the type selected, new
data must be entered to completely define the objective
function. Finally, (s)he selects the optimization method
and configures its specific parameters. After initiating the
optimization process, the results window is opened. It
shows the evolution of the optimization process along the
iterations. In the full paper, details of other user interfaces
will be illustrated.

Results

To illustrate an application of Optimise, the following
analytical optimization problem was studied. The problem
consists in optimizing

F (x, y) = x
√

1 + y2 (3)

with the following nonlinear constraints:



g1(x, y) = 0.124
√

1 + y2
(

8
x + 1

xy

)
− 1 ≤ 0

g2(x, y) = 0.124
√

1 + y2
(

8
x − 1

xy

)
− 1 ≤ 0

(4)

Also, the variables must respect the upper and lower limits
0.2 < x < 4.0 and 0.1 < y < 1.6.

This problem was solved using the BFGS method cou-
pled with a penalty function to treat the constraints. Start-
ing from x = (−3, 3) the optimization process converged to
the minimum in 11 iteration, at which F (x, y) = 1.5087,
(x, y) = (1.4116, 0.3771), g1 (x, y) = 0, g2 (x, y) = −0.4979.
These results are in agreement with the analytical solution.
Figure 4 illustrates the surface of the objective function and
the evolution of the optimization process.

Fig. 4. Evolution of the optimization process.

Conclusions

The results show that Optimise is a flexible and efficient
educational optimization tool that can be used in the class-
room. It incorporates a set of optimization methods that
can used to solve a broad range of problems. It also has
a computational intelligence module that widens its ap-
plicability. Optimise has a friendly interface that enables
the student to investigate the features of the opimization
methods. The software was conceived using object-oriented
programming to facilitate its maintenance and evolution.
Optimise is planned to be available in public domain. It is
hoped that this ideal will enhance its audience.

References

[1] F. Thollon and L. Nicolas, “A Computer Aided Education Tool
for Electromagnetic Scattering Phenomena”, IEEE Transactions
on Magnetics, vol. 36, no. 4, pp.880-883, 2000.

[2] K. Preis, O. Biro, T. Ebner, and I. Ticar, “An Electromagnetic
Field Analysis Tool in Education”, IEEE Transactions on Mag-
netics, vol. 38, no. 2, pp. 1317-1320, 2002.

171Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



An Analysis of the Performance of a MEMS Micro-Mirror 

J. Wen, X. Hoa, A. Kirk, D. Lowther 
Department of Electrical and Computer Engineering 

McGill University 
3480 University Street, Montreal, Quebec Canada 

e-mail: lowther@ece.mcgill.ca

Abstract �The paper describes the structure and analysis of a 
particular MEMS micro-mirror device that can be used as an optical 
switch. The predicted performance is compared with measurements. 
Sufficient details are given to enable this device to be used as a 
benchmark problem for electric field analysis systems. 

INTRODUCTION

The ability to switch optical signals without the need to 
convert them to and from electronic form is important for 
several applications. Examples include optical 
communications networks and video projectors. The 
switching of light signals can be achieved by the use of small 
mirrors which can be moved to deflect the incoming beam 
into a desired direction [1]. These mirrors are of the 
dimensions of microns and are moved by the use of micro-
electromechanical- systems (MEMS) devices. At the sizes 
being considered, the actuation of the MEMS device usually 
involves electrostatics. 

The devices are constructed by using techniques which are 
very similar to those used in fabricating integrated circuits, 
i.e. by a series of deposition and etching processes. 

The intention of this paper is to present the structure of 
one such device that might provide a future benchmark for 
analysis systems and to compare measurements of its 
performance with numerical predictions. 

THE MICRO-MIRROR STRUCTURE

The MEMS device being considered in this comparison is 
shown in Fig. 1, [2]. The mirror structure (the central 

rectangle) is gimbaled through two torsion springs at right 
angles to allow motion in two orthogonal directions. The 
mirror can be rotated about the x-axis (North-South) by one 
pair of electrodes and about the y-axis (East-West) by a 
second pair of electrodes, orthogonal to the first. A view of 
the electrode structure and springs is shown in Fig. 2. 

TABLE I. DIMENSIONS OF THE MEMS MICRO-MIRROR.

Item Value
Overall dimension 240*260 �m
Flat mirror surface 65*65 �m
Torsion spring 6*20 �m
A1 35 �m
A2 60 �m
A3 75 �m
A4 90 �m
L1 120 �m
L1 180 �m
The device was manufactured using the MUMPs process. 

In this system, a 0.6 µm film of silicon nitride is deposited on 
a silicon substrate followed by a 0.5 µm layer of polysilicon 
which is used to form the electrodes. Next a 2 µm of 
phosphosilicate glass (PSG) is deposited on top of which is 
placed 2 µm of polysilicon. These last two layers are repeated 
to create an entire structure 9.1 µm thick. Each layer is etched 
after deposition to create the desired structure. Once the 
layers have been constructed, the PSG layers are etched away 
to leave the top layers free to move. The overall dimensions 
of the mirror structure are given in Table I. And the material 
data is given in Table II. 

Fig. 1. View of the micro-mirror system. 
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TABLE II. MATERIAL DATA FOR THE MEMS MIRROR.

Material Relative Permitivity 
Polysilicon 11.0 
Silicon Nitride 9.4 

ANALYSIS

The mirror can rotate around the y-axis by twisting about 
the inner gimbal structure or the x-axis by twisting about the 
outer gimbal. In each case, the electrostatic forces rotate the 
mirror while a restoring torque is generated by the twisting of 
the rectangular beams (torsion springs) which support the 
mirror structure. The restoring torque generated by twisting a 
rectangular cross-section beam has an analytical solution: 

�
�

KTmech �           (1) 
where Tmech is the mechanical torque at an angle  and K

is the spring constant. For a torsion spring of length l, width 
w, and thickness t, the spring constant is given by: 

�

�

�

�

�

�

�

�

	




�

�
���

t
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w
t

l
GwtK
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tanh1921

3
2 5

3
�

�

�

    (2) 

and G is given by : 

)1(2 ��

�

EG            (3) 

where  = 0.28 for polysilicon and E (Young’s modulus) 
is 1.35*1011 (for the current material). 

The torque due to the electric field was computed from a 
3-D electrostatic analysis [3] and the curve of deflection angle 
versus applied voltage was obtained by determining the angle 
at which the electric and mechanical torques balanced for 
each voltage.  

RESULTS

Typical curves of mechanical restoring torque and electric 
torques plotted against angle for a particular voltage are 
shown in Fig.2. It can be seen that there are two crossing 
points. The first point at which the curves cross is the stable 
rotation angle for the applied voltage.  

Fig.3. shows the computed and measured torques for the 
device. As can be seen, the agreement is fairly good and 
certainly, the curves follow the same general shapes. The 
errors are probably due to three sources. The first is the 
permittivities of the materials and the second is the 
mechanical rotque. Due to etching, the beam may not be 
perfectly rectangular and a full numerical analysis allowing 
for possible variation in the cross-section from a rectangle 
should probably be applied. The third source of error is due to 
the fact that the electric forces are distributed over the surface 
of the mirror and there is probably some bending of the 
mirror structure itself, in addition to the beams. It is intended 
to add a further analysis to estimate this bending but this 
requires a full structural analysis of the mirror under a 
distributed force. 

CONCLUSIONS 

The paper has described a MEMS device and provided a 
geometric description and a set of experimental 
measurements. The numerical predictions of the device 
performance show reasonable agreement with the 
measurements. This model can be used as a benchmark for 
both electrostatic analysis and for a coupled structural- 
electrostatic analysis. More details on the measurements and 
the device performance will be given in the full version of the 
paper.
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Scalar and Vector Potentials
in the Dynamical Equations of Electromagnetism

José A. Camberos
United States Air Force Research Laboratory, Dayton, OH 45433

Abstract—The solution of the complete set of electromagnetic
equations, including the two divergence equations, is proposed by
the addition of two pseudo–variables that represent the presence of
magnetic monopoles and scalar vacuum polarization (both set to
zero to prevent solutions not supported by physical theory). The
added symmetry, which bestows a degree of aesthetic beauty to
the governing equations, also has the practical benefit that couples
the divergence equations to the curl equations, thus representing a
complete solution in the sense that all four equations can be solved
together. Hence, the divergence–free conditions in the absence of
electromagnetic sources are explicitly enforced, suppressing spuri-
ous solutions.

INTRODUCTION

The speed, memory, and power available in modern com-
puter architectures makes it possible to obtain numerical so-
lutions of partial differential equations in diverse theoretical
fields. The numerical solution to Maxwell’s equations in par-
ticular began as soon as computers were available. Recently,
finite–element and finite–volume methods have received atten-
tion. Every numerical method has its strengths and weak-
nesses; its champions and detractors. As yet, no ideal numerical
method, acceptable by even a majority of users, provides suffi-
cient flexibility, accuracy, robustness, and ease of use to declare
further research and development obsolete.

The lack of complete symmetry in the Maxwell equations of
electromagnetism has been well-noted and lamented[1]. The
author presents the results of a search to fully couple and solve
a completely symmetric set of electromagnetic equations in-
spired by the work of Harmuth[2], Cornille[3], and Jiang[4].
Some of these works have provoked controversy and perhaps
remain on the fringes of research in computational electromag-
netics, where standard algorithms for finite–difference time–
domain methods continue to dominate. By abstracting from
the common elements and ideas in the scalar and vector poten-
tial formulation of Maxwell’s equations, it is possible to infer
additional terms in the partial differential equations that repre-
sent phenomena not presently supported by theory but that may
nevertheless be useful in numerical solutions, where spurious
terms with no physical source often arise and need to be con-
trolled or suppressed. Jiang[4] solved this problem by develop-
ing a mathematical formulation in context of the finite–element
method that fully coupled the full Maxwell equations, including
the two divergence equations.

Because the divergence equations can be derived from the
curl equations, it was recognized early on that these are not in-
dependent and instead have the form of initial and boundary

conditions. However, once the formulas contain complete sym-
metry, the divergence equations no longer appear redundant and
in fact explicitly represent a conservation law for electric and
magnetic charge.

Electromagnetic Equations: In the presence of simple ma-
terial media, (isotropic, linear properties), the Maxwell equa-
tions (also known by their respective historical names) describe
electromagnetic phenomena:

Curl Eqns. : ∇× �E = −∂ �B

∂t
; ∇× �H =

∂ �D

∂t
+ �Je (1)

Div Eqns. : ∇· �D = ρe ; ∇· �B = 0 (2)

Constitutive relations for simple media (linear, isotropic, and
homogeneous) include: �D = ε �E, �B = µ �H, and �Je = σe

�E.
These allow for some flexibility in choosing the dependent vari-
ables so the Maxwell equations can be written in various ways.
The symbols ε and µ represent the electric and magnetic con-
stants of the medium respectively; these are related to the speed
of light in the medium: c2 = 1/εµ.

VECTOR AND SCALAR POTENTIALS

Vector and scalar potentials for Maxwell’s theory are now
standard practice in college courses on electromagnetism, even
introductory ones since the concept and ideas are relatively easy
to grasp. They also make evident the connection between elec-
tric and magnetic fields and their sources (electric charge and
current). Standard practice (e.g., Stratton,[6]) in developing
electromagnetic theory considers the vector �Ae and scalar po-
tential φe fields such that

�B = −µ∇× �Ae , �D = εµ
∂ �Ae

∂t
+ ∇φe . (3)

On choosing the Lorenz1 gauge

∂φe

∂t
+ ∇· �Ae = 0 (4)

and substituting into the Maxwell equations gives a set of wave
equations, one for the scalar potential and one for the vector
potential:

∇2φe − εµ
∂2φe

∂t2
= ρe , ∇2 �Ae − εµ

∂2 �Ae

∂t2
= �Je . (5)

1The gauge is nowadays attributed to H. A. Lorentz, although it was
L. Lorenz who first published the concept, as detailed by Nevels[5].
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Using a Green’s function approach, the proper solutions to
the scalar and vector wave equations (5) are given by

=⇒ φe(�r, t) =
−1
4π

∫∫∫
[ρe]

dV1

R
(6)

=⇒ �Ae(�r, t) =
−1
4π

∫∫∫
[ �Je]

dV1

R
(7)

where the notation [ξ] = ξ(�r, t−R/c) and R = |�r − �r1| repre-
sents the time–delayed quantities.

MAGNETIC MONOPOLES

Maxwell’s electromagnetic theory does not exclude magnetic
monopoles, although these have no experimental evidence as
yet. Nevertheless, it is possible to postulate magnetic charge
carriers for the practical purpose of obtaining solutions for the
Maxwell equations that may not be possible otherwise[2]. To-
wards that end, consider the vector and scalar potential func-
tions that satisfy the differential equations as given by (5). By
analogy, one may postulate a corresponding set of magnetic
vector and scalar potential functions satisfying

∇2 �Am − εµ
∂2 �Am

∂t2
= �Jm , ∇2φm − εµ

∂2φm

∂t2
= ρm . (8)

Lorenz–type gauge conditions provide the coupling of the
scalar and vector fields:

∂φe

∂t
+ ∇· �Ae = 0 ,

∂φm

∂t
+ ∇· �Am = 0 . (9)

Abstracting from (3), define the �B and �D fields as

�B = εµ
∂ �Am

∂t
+ ∇φm − µ∇× �Ae (10)

�D = εµ
∂ �Ae

∂t
+ ∇φe + ε∇× �Am (11)

Taking the divergence and curl of each quantity gives a form
of the electromagnetic equations, after some simplification and
manipulation, that exhibit a striking symmetry, endowed by
postulating magnetic charge and current. From solutions to (8)
and the Lorenz gauge condition (9), the conservation of mag-
netic charge equation gives

∂ρm

∂t
+ ∇· �Jm = 0 (12)

Consider now a more general method for deriving the govern-
ing equations in terms of electric and magnetic field quantities.
First, postulate a set of vector and scalar potentials. Second,
select a generalized Lorenz gauge. Third, define the electric
and magnetic fields. Fourth, obtain the differential equations
for these by taking the divergence and curl of each and manip-
ulating in combination with the appropriate time–derivative.

EM EQUATIONS WITH POLARIZATION GAUGE

As an alternative to the Lorenz gauge condition, define the
scalar–polarization condition as

∂φm

∂t
+ ∇· �Am = −Pm (13)

∂φe

∂t
+ ∇· �Ae = −Pe (14)

which represent vacuum polarization[3]. Now the electro–
magneto dynamic equations with polarization gauge exhibit
complete symmetry:

∂ �B

∂t
+ ∇×

�D

ε
+ ∇Pm = − �Jm (15)

∂ �D

∂t
−∇×

�B

µ
+ ∇Pe = − �Je (16)

εµ
∂Pm

∂t
+ ∇· �B = ρm (17)

εµ
∂Pe

∂t
+ ∇· �D = ρe (18)

Contrast these with Equations (10),(11), (13), and(14), which
have identical mathematical properties.

Continuity equations for electric and magnetic charge now
represent a wave equation for the scalar polarization:

∇2Pm − εµ
∂2Pm

∂t2
= −

(
∇· �Jm +

∂ρm

∂t

)
(19)

∇2Pe − εµ
∂2Pe

∂t2
= −

(
∇· �Je +

∂ρe

∂t

)
(20)

A Green’s function approach readily provides the solutions:

Pm(�r, t) =
1
4π

∫∫∫ {
∇1 · [ �Jm] +

[
∂ρm

∂t

]}
dV1

R
(21)

Pe(�r, t) =
1
4π

∫∫∫ {
∇1 · [ �Je] +

[
∂ρe

∂t

]}
dV1

R
(22)

Remark: The scalar–polarization solution given by (21)
and (22) demonstrate explicitly that a violation of charge con-
servation (electric or magnetic) gives rise to a different gauge
condition than that theoretically proposed Lorenz. In numerical
solutions of Maxwell equations, be it finite–difference, finite–
volume, or finite–element, will not necessarily satisfy charge
conservation unless strategically designed to do so. For gen-
eral purpose computational electromagnetic solvers, this may
not be possible if the divergence equations are ignored or taken
for granted as redundant.
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Abstract—The eddy current distribution in a thin nonferrous 
steel plate is calculated by using the finite volume method 
excited by a 50Hz sinusoidal magnetic field. Based on the flux 
conversation conception of control volume, an equation group 
with unknown nodes of current vector potential T can be 
formed in a straightforward way. The numerical results show 
very good agreements with the experimental data of TEAM 
problem 21. 

INTRODUCTION

The analysis of eddy current field is an important 
problem for the engineering design and scientific research. 
In the past years, the finite element method is widely used in 
many engineering applications. However, there are few 
papers to report calculation of the eddy field by the finite 
volume method (FVM)[1]. In this paper, an eddy current 
problem analyzed by FVM is presented and TEAM Problem 
21[2] with a nonmagnetic steel plate is picked out as an 
example to verify the effectiveness of approach proposed. 

PRINCIPLE 

The schematic diagram of TEAM problem 21 is shown 
in Fig. 1. The model consists of two rectangle coils with the 
same geometrical dimension and a nonmagnetic steel plate 
with 3 rectangle slots. Since the steel plate is thin as 
compared with its skin depth, the eddy current J in the 

plate has no normal component, that is, kjJ zy JJ �� ,

where i , j  and k  are unit vectors of the coordinate axis 

respectively. Obviously, the rotation of J  has only the 
component along the x axis, so 

iJ )( sxrx
2 HHk �����                      �1�

where ���0
2 j�k , 1-j � .�  is the conductivity of the 

steel. sxH  and rxH are the magnetic field intensities of x

axis components generated by the exciting current of coils 
and the eddy current within the thin plate respectively. It is 
convenient to use ��T  potential to analyze the eddy 
current field, i.e., 

�������� THJT r,                   �2�

where rH  is in corresponding with the magnetic field 

intensity generated by the eddy current. It should be noted 
that the direction of T is only along the unit vector i . By 
substituting (2) into (1), (1) can be rewritten as 

iJ ))(( sxx
2 HTk x ��������               �3�

Similar to the finite element method, the steel plate is 
discreted by a number of hexahedron elements as shown in 
Fig.2. The central point scheme is employed, which means 
that the unknown is the current vector potential in the center 
of each element. By referring to the diagram of element 
1234 shown in Fig.2(b), (3) can be recasted as   

i
sJ

J )
zy

(
d

ydybzczas

�

�

�

�

�

�

�

��

���

�� JJJJ
v

�4�

where zyxv �������  is the control volume and S  is its 

surface. zaJ , zcJ , ybJ  and ydJ  are the eddy current 

flowing along four sides of each element. Taking the element 
5678 as an example and choosing the integral path efgh 
shown in Fig.2(c), in terms of the identical equation 

Fig. 1 Model of TEAM problem 21 
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IlTd , one can obtain yxJxTxT dddd zax1x0 �� , i.e., 
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According to Fig.2(d), the magnetic intensity of field P 

generated by the element 1234 is 
rr
rs
�����

��s 2
s

4
d�

,

where s�  is the surface density of magnetic charge and r

is the distance between the field and source point. Then the 

x  component of x)( ��  is 
��

�

s 2
s cos

4
d

�

�

r
s

, where �

is the angle between the vector r  and i . Because the 
thickness of steel plate is rather small, s�  equals to the 

current vector potential T  approximately, in addition, the 
solid angle �  of field point P with respect to each element 

is
��

�

s 2
dcos

r
s� , so 

4
)( ��

���

T
x . By adding up the 

contribution of neighboring element, for the center of the 
element 1234, one can get  

24
2)(

4

1
x

4

1
x

0
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�

���

i
ii

i
ii

x

TT ��

            �7�

where iTx  is the current vector potential of element 
surrounding element 1234. i�  is the solid angle of the 

center of element 1234 with respect to its neighboring 
elements. The coefficient 2 is due to accumulating the 
contribution of magnetic charge on the upper and lower plate 
surface. Substituting (4),(5),(6) and (7) into (3) and recasting 
(3), for the element 1234, the unknown current vector 

potential of FVM scheme can be expressed as  

0

0sx
0sx

4

1
x0x22

4

1
x0x

�

�

B
HTT

hk

TT

i
ii

i
i

�������

�

�

�

�

�      (9) 

where zyh ���� , 0sxB  is the magnetic induction intensity 

generated by the coils and can be calculated by using 
Boit-Savart’s law. Then an equation group with the unknown 

xT  can be formed by applying (9) to each element, and the 
eddy current J  can be evaluated by xT  in terms of (2). 

NUMERCIAL EXAMPLES 

The steel plate shown in Fig.1 is made of non-magnetic 

steel with 1�r� , S/m1039.1 6
���  and its length, width 

and height is 820 , 360  and mm10  respectively. The 

direction of the exciting current in one coil is opposite to that 
of another, and the ampere-turn of two coils are both 3000 
AT (RMS, 50Hz). Fig. 3 shows the comparison curves 
between the numerical and measured magnetic flux density 
at some specified positions of steel plate.  

CONCLUSION 

The TEAM problem 21 is analyzed by using the finite 
volume method. The numerical results show that FVM is 
another good candidate approach to calculate the eddy 
current problems. 
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Calculation of Eddy Current Energy Losses in Thin Sheets under Saturation
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Abstract— This paper presents an approach for eddy current
energy losses computations. The approach is based on the A-V
formulation. The Newton-Raphson algorithm with the jacobian
matrix calculated numerically has been applied. It has been fo-
cused on devices with parts consisting of thin sheets. Influence of
saturation effects has been studied. For such devices very high
accuracy of field solution is required in order to calculate energy
losses precisely. The simulation of permanent magnet rotating ma-
chine with enforced movement is presented.

I. INTRODUCTION

A common problem is magnetic field analysis in systems
with thin conductive layers [3]. One obvious issue is discretiza-
tion using finite elements mesh since the skin effect depth re-
mains unknown as transient simulation is performed. This can
be, however, overcome for instance, when adaptive or local
mesh refinement is applied [4]. Alternatively, skin effect depth
can be precisely enough estimated when sufficient details about
exciting waveform are provided. Additional problems in thin
sheets analysis arise when saturation effects become important.
In particular, convergence difficulties during transient simula-
tion may arise as iterative method, used to solve nonlinear equa-
tions, lead to high flux density values during solution process.
Similarly, substantial changes of magnetization curve slope im-
pede convergence process.

The accuracy of field solution is of great importance in sys-
tems with eddy currents. It is well-known that eddy current
density depends on derivative of magnetic flux density with re-
spect to time. The derivative is a function of working point
locus. Therefore, high accuracy in evaluation of the operating
point is required in the systems working near the saturation. In
such systems flux density changes remain very small during rel-
atively substantial changes of magnetic field strength. Whereas,
in non-saturated region, the same field strength changes corre-
spond to considerably larger shifts along the flux density axis.
It leads straightforward to inconsistencies in eddy current en-
ergy losses calculations. Therefore, considering the saturation
in thin sheets and its accuracy aspects are the major contribution
of this paper.

We propose to take advantage of the Newton-Raphson
algorithm with the jacobian matrix calculated numerically. This
method is characterized by unique approach to the magnetiza-
tion characteristics on the H-B plane. The method is proper
and remains unchanged for both initial magnetization curve and

permanent magnet demagnetization curve as well as for hys-
teresis loops. Thus, one can control the accuracy of the whole
field problem by parameters and stopping criteria of only one
routine.

The paper is organized as follows. After the introduction
a brief description of problem formulation is given. Next, we
propose an approach to saturation effects. After that some nu-
merical example is presented. The last section covers some fur-
ther remarks.

II. PROBLEM FORMULATION

We exploit the A-V formulation. The field distribution in
non-conducting region is described by

rot
1
µ

rotA = j0 +
1
µ0

rotM , (1)

whereas in conducting area governs

rot
1
µ

rotA = je (2)

div je = 0; (3)

where je stands for eddy current density

je = −σ
∂A

∂t
− σgrad V.

Using the finite element method, one obtains the equations
(1)-(3) in matrix form[

S E
0 G

]{
A
V

}
+

[
F
ET

]
∂

∂t
{A} =

[
C + M

0

]
, (4)

where
{A} is vector of unknown nodal components

of magnetic vector potential,
{V } is vector of unknown nodal values

of scalar electric potential,
[C] is exciting current density vector and
[M ] is magnetization vector.

The permeability tensor µ and the magnetization M are usu-
ally functions of magnetic flux density, hence they depend on
magnetic vector potential, therefore the operator [S] and the
vector [M ] tend to be nonlinear ones with respect to the un-
known vector {A}. To deal with the nonlinearities the Newton-
Raphson method has been chosen [5].
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III. SATURATION EFFECTS

Consider an operating point on the magnetization curve on
the H-B plane. The eddy current energy losses depend on the
derivative of the operating point flux density component with
respect to time. Thus high accuracy in the evaluation of the
working point is essential, especially when relevant changes
of magnetization curve slope occur in the neighborhood of the
working point.

Since the fixed point method proposed in [1] loses accuracy
near the saturation, we have proposed another approach. Our
idea is to calculate the jacobian matrix of the system (4) numer-
ically using forward difference formula [6]. In order to perform
the calculations efficiently each element is considered individ-
ually.

Let us focus on the nonlinear components of (4), i.e. [S] and
[M ], expressed in terms of the element nodal components of
magnetic vector potential {Ae}. We use the notation Re for
the element remainder vector and J e for the corresponding ja-
cobian matrix, respectively. The calculation of the jacobian is
performed for column j as follows

Je
·,j =

Re(Ae + Ae
j) − Re(Ae)

∆j
, (5)

where: Ae
j = [0 · · ·∆j · · · 0]T .

The remaining issue is evaluation of the increment ∆ j . The
choice of the increment cannot be arbitrary due to the fact that
∆j influences the flux density hence the working point locus on
the H-B plane. We assume that from the magnetization curve
slope a proper increment of flux density ∆B can be obtained.
Thus the increment ∆j fulfills equation

B
(
Ae + Ae

j(∆j)
)

= B (Ae) + ∆B (Ae) ; (6)

where the above equation can be solved either as vector equa-
tion or in terms of absolute values. The flux density is related
to magnetic vector potential by means of B = rotA.

IV. NUMERICAL EXAMPLE

As numerical example we use a permanent magnet rotating
machine. The discretized three dimensional model is presented
in Fig. 1. It is assumed that field distribution of a single sheet
is representative of the entire machine. The mesh consists of
297 689 elements. The teeth material magnetization charac-
teristic is depicted in Fig. 2. The nominal operating point is
located near the saturation.

V. FURTHER REMARKS

In the full paper it is intended to cover some further details
concerning implementation of the jacobian matrix evaluation.

The results of transient idle state simulations for varying
sheet thinness will be presented in the full paper; the compari-
son with measurements will be given.

Fig. 1. Permanent magnet rotating machine
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Fig. 2. Magnetization characteristic of teeth material
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Abstract—The 3D Finite-Element method (FEM) allows for the
calculation of eddy currents in the claws of synchronous claw-pole
alternators taking the rotational geometry movement into account.
A transient edge-based vector formulation is utilized to compute
the induced eddy-current losses in the rotor caused by the stator
slotting. The theory of this formulation is outlined and the FEM
model of the alternator is described. On a model built in series-
production the local loss distribution on the rotor claw is discussed
as well as the speed characteristics of the eddy-current losses. The
use of adaptive mesh optimization leads to corrected results which
will be compared to measurements in the full paper.

Index Terms— Transient 3D FEM computation, Eddy-current
losses, Geometry movement, Adaptive h-refinement

I. INTRODUCTION

The efficiency of electric machines is decreased by differ-
ent loss mechanisms. In the case of the claw-pole alternator,
these are dominantly ohmic losses in the coils, that define the
loss behavior in the lower speed range of the alternator. Addi-
tionally, iron losses, consisting of hysteresis and eddy-current
losses, define the high-speed loss characteristics of this ma-
chine [1]. Both can be broken down into rotor and stator parts.
Whereas the ohmic losses can be directly calculated in depen-
dence on the coil currents, an analytic description of the iron
losses is not possible due to the geometric complexity of the
three-dimensional field distribution.

Measurements of the total losses and a subtraction of all an-
alytically defined loss mechanisms lead to a separation of the
iron losses. These separated losses are error-prone due to the
long series of measurements.

Usage of the Finite-Element Method (FEM) combined with a
time-stepping approach allows to calculate the eddy currents in
conducting materials which are induced by an alternating mag-
netic field. In the case of the claw-pole synchronous machine,
the eddy-current losses in the rotor claws are caused by the ro-
tor movement in combination with the stator slotting. The mag-
netic flux pulsates with the slot frequency e.g. fslot = 1800 Hz
at speed n = 3000 rpm. The flux pulsations induce the eddy
currents in the claws made of massive steel.

In this paper the applied transient edge-based FEM approach
[2] is outlined. The 3D model of the claw-pole alternator is
described. The characteristic curve of the rotor eddy-current
losses depending on the alternator speed in generator mode is
presented. Adaptive refinement in eddy-current regions with
two different local error estimation strategies is applied. The
calculation results are compared to measurements.

II. THEORY OF THE EDGE-BASED SOLVER

The applied edge-based solver is part of an object-oriented
solver package [3]. It applies a transient edge-based FEM for-
mulation on simply-connected eddy-current regions taking the
rotational movement into account by means of time stepping.

The transient �A-approach applies only the magnetic vector
potential �A in all regions Ω utilizing the following equation (in
Galerkin formulation):

∫
Ω

∇× �αi · ν ∇× �A(t) + σ
d �A(t)

dt
dΩ =

∫
Ω

(�αi · �J0(t) + ∇× �αi · ν �Br(t))dΩ . (1)

The material parameters ν and σ represent the non-linear re-
luctivity and the linear conductivity, respectively. �αi defines
the shape function of an edge element (in this solver first-
order tetrahedra). �J0(t) describes the given coil current den-
sity while �Br(t) defines remanence. Note, that external cur-
rents ( �J0(t) > �0) are only allowed in non-conducting regions
(σ = 0) while remanence is valid in all regions (σ ≥ 0).

The time-stepping algorithm interpolates the time-dependent
variables linearly:

�A(t) = τ · �An+1 + (1 − τ) �An ditto for �J0(t), �Br(t);
∂

∂t
�A(t) =

1
∆t

( �An+1 − �An) , (2)

where n represents the number of the transient step, ∆t the time
in between transient steps and τ the relaxation factor. The re-
laxation factor in between transient steps is chosen as τ = 2

3
(Galerkin-scheme) [4].

The resulting global matrix is symmetric, thus allowing the
storage as lower or upper triangular matrix and the use of the
Cholesky-CG combination [2] of the ITL package [5]. Satura-
tion effects are computed with an overlaying Newton-Raphson
procedure for each transient step.

To represent rotational movement a lock-step method is uti-
lized. Boundary conditions pair edges in a sliding area mesh.
In each step a search function connects the edges in this area
depending on the displacement in between the transient steps,
while the mesh remains stationary [6].

III. FINITE-ELEMENT MODEL

A model of the alternator in production is depicted in Fig. 1
with translucent stator regions.
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Fig. 1
MODEL OF SERIES-PRODUCTION ALTERNATOR

The edge-grouping routine of the transient solver described
in section II depends on a special air-gap discretization. To im-
plement the change of geometry, the FEM mesh of the alterna-
tor is separated into moving elements in the rotor and stationary
elements in the stator. The boundary area of these two meshes
is located in the middle of the air gap. It is meshed identically
in both separate meshes.

IV. CALCULATIONS AND RESULTS

All calculations are conducted at constant speed. The ma-
terial conductivity of iron σ = 7.5 · 106 [Ωm]−1 is used for the
massive steel regions of the claws.

The computations are started on a coarse mesh of about
150 000 first-order elements. In order to calculate the dis-
cretization error, the eddy-current density of a full loss period
is taken into account by using the arithmetic mean value of the
local error for each element. In each adaptive step a given ra-
tio of the elements with the highest local error is refined by
h-partitioning.

Two strategies for the local error estimation are evaluated.
The first strategy defines the highest error in dependence of the
gradient of the eddy-current density �J :

ε1 = |∇· | �J || . (3)

The second strategy evaluates the error of the joule loss in each
element e rated by the total loss of the conducting region [7]:

ε2 =

∫
Ωe

( �Je − �Javr) · �Ee dΩe∫
Ω

�J · �E dΩ
. (4)

�Je and �Ee are the eddy-current density and the electric field
strength of element e while �Javr defines the average eddy-
current density of all contact elements.

Both error estimators lead to mesh refinements on the surface
of the rotor claw interfacing the air gap. Figure 2 depicts the
density of the mesh on the claw tip comparing the starting grid
to a mesh after 3 adaptive steps.

With finer meshes the average eddy-current loss decreases
(Fig. 3). The adaption is ended when the difference of the av-
erage loss values before and after the adaptive step falls below
a given limit of 5%. This limit is reached after 3 to 4 steps.

w(W/m3)

Fig. 2
LOSS ENERGY OF STARTING MESH AND OF ADAPTIVE STEP 3

The working points of the alternator are varied from
n = 1500 rpm to n = 10000 rpm. These computations lead to
the characteristic speed curve of the average eddy-current losses
in the rotor in generator mode on a half-logarithmic scale as
presented in Fig. 3.
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EDDY-CURRENT LOSSES VS ADAPTIVE STEP AND VS ALTERNATOR SPEED

V. CONCLUSION

A transient 3D FEM approach to calculate the eddy currents
in the claws of a synchronous claw-pole alternator is applied
taking the rotational movement into account. Two different
error estimators are compared that lead, in combination with
adaptive remeshing, to the characteristic speed curve of the
eddy-current losses in the rotor. Comparison to measurements
as well as discussion of both error estimators will follow in the
full paper.
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Abstract- Nowadays the non-destructive material testing is increasin-
gly important. This work deals with eddy current testing. The finite net-
work method (FNM) is used as numerical computation method.

INTRODUCTION

A further application of the finite network method (FNM)
consists of detecting material defects by means of eddy current
testing (ECT) in the context of non-destructive material testing.
For this raison a physical model, consisting of an exciting coil
and a massy conductor, is selected. With this numeric method
is necessary to discretize only areas with conducting material
and the surfaces of the iron domains.

NUMERICAL COMPUTATION MODEL

In an eddy current area with magnetizable matter, there are
magnetizing currents flowing on the surface as well as inside
the magnetizable matter, in addition to the eddy currents. A
homogeneous isotropic and linear matter presumed, eddy cur-
rents and magnetizing currents inside could be summarized
[3]:

(1)

where is the magnetizing current and is the eddy cur-

rent in the massy conductor.
Through the discretisation of a three-dimensional model results
a spatial network, which consists of rectangular solid volume
elements. The corner points of these volume elements are cal-
led grid-points of the network. Each centre-point of such an
element is a network-node and each connection between neigh-
bouring network-nodes is a network-branch. According to
FNM, the conducting parts will be transformed into a network
of resistances and (mutual-)inductances [1,2]. The current den-
sity within a network-branch is assumed to be constant. For
this reason, the current density may be replaced by the current
that flows in the related network-branch. Such a network crea-
ted by disretisation may be extended with additional elements
(voltage sources, for example). In order to be able to analyse
the network with the mesh current procedure, the characteristic
values of its elements, voltage supplies, resistances and induc-
tances must be specified [3]. The voltage supplies are conside-
red here as given.
The configuration in this work is composed of a very thin exci-
ting coil and a massy conductor of iron. The exciting coil and

the massy conductor, which, as describes above, discretised
into many short circuit loops, form a primary and a secondary
system.
For a sinusoidal exciting voltage the system equation, in matrix
notation, yields:

(2)

with:

a (nxn) matrix on their diagonal the impedances and on

the secondary diagonal the mutual inductances of the

short-circuit loops to each other in the secondary system

(n to be the number of independent loops in the massy

conductor),

one dimensional matrix of the length n of all mutual in-

ductances between the short-circuit loops in the massy

conductor and the exciting coil,

the transpose matrix of

impedance of the primary system,

Iges one dimensional matrix of the length n of all currents of

the short-circuit loops in the secondary system,

Ip current at the primary system

U voltage of excitation at the primary system

Further it could be noted:

(3)

It is also valid:
(4)

 From (3) and (4) it results:

(5)
The impedance of the system yields:

(6)
where

is the real part of system impedance and is the

imaginary part of the system impedance.

Iges Im Iw+=

Im Iw

Zss jωM ps

jωM ps
T

Z p

Iges

I p

0

U
=

Zss

M ps

M ps
T M ps

Zp

U Z p jω( )2M ps
T

Zss
1–

M ps– I p=

U Z I p⋅=

U Z p jω( )2M ps
T

Zss
1–

M ps– I p=

Z Rsys jωMsys+=

Rsys Msys
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If a crack is in the massy conductor, the system impedance
changes. This change can be expressed as follows:

(7)

(8)

with
the resistance of the systems with crack,

the inductance of the system with crack,

the resistance of the Systems without

crack,
the inductance of the system without

crack.

EXAMPLE OF APPLICATION

An alternating voltage of constant amplitude (1V) is app-
lied at a one-winding copper coil. The numerical computation
is performed for 50Hz as well as for 100Hz. The relative per-
meability of the massy conductor is set to be 100. The exciting
coil moves with a constant velocity along the massy conductor
[4]. The position of the coil center refered to the crack center is
(x). The crack length is set to be 3mm and the coil width 4mm.
Alteration of impedance of the sensor coil was evaluated at dif-
ferent positions. Furthermore the alteration of impedance was

determined at a frequency of 900Hz and for different -

values.

RESULTS

The variation of coil impedance is determined according to
the equations (7) and (8). The impedance variation depending
from the distance (x) between the coil center and the crack cen-
ter is shown in Fig. 1 resp. Fig. 2 for 50Hz as well as for
100Hz. The dependence of impedance variation from relative
permeability of the medium is illustrated in Fig. 3 at x=0 mm.

Fig. 1: Impedance variation at f=50Hz and =100

Fig. 2: Impedance variation at f=100Hz and =100

Fig. 3: Impedance variation at f=900Hz and for variable -values

CONCLUSION

In case of ferrousmagnetic media a noticeable variation of
impedance may be observed only in the proximity of the mate-
rial defect. The sensitivity of the coil-sensor is smaller by
encreasing distance(x)-values. Similar observation of impe-
dance variation may be seen in dependence of permeability.
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Abstract � It is important for the high efficient design of motors to 
clarify the iron loss (the eddy current loss and the hysteresis loss). In this 
paper, the eddy current loss and the hysteresis loss of a piece of silicon 
steel sheet of a surface permanent magnet motors (SPM motors) are 
calculated using the 3-D finite element method. It is clarified that the 
skin effects increase the iron loss by our calculation. Furthermore, we 
calculated the eddy current distribution in the  permanent magnet. 

INTRODUCTION 

Recently, the development of high efficient motors is 
strongly desired for the environmental issues[1][2]. In order 
to operate the SPM motors high efficiently, it is important to 
clarify the iron loss. However, the analysis techniques of the 
eddy current loss and the hysteresis loss have not been 
established as yet.  

Then, we calculated the three dimensional distributions of 
eddy current and flux in a piece of silicon steel sheet of a 
SPM motor using the 3-D finite element method. It is 
clarified that the eddy current loss and the hysteresis loss in 
the SPM motor. Furthermore, we calculated the eddy current 
loss in a permanent magnet of a SPM motor with or without 
the overhang of the permanent magnet. 

As the results of computation, it is found that the iron loss 
with skin effects is different from the iron loss without skin 
effects, and the effects of overhang of permanent magnet on 
the eddy current loss in the permanent magnet and the iron 
loss are also quantitatively clarified. 

ANALYSIS METHOD 

A. Magnetic Field Analysis

The fundamental equations of the magnetic field using the 
3-D FEM can be written using the magnetic vector potential 
A and the electric scalar potential � as follows [3]: 
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where, � is the reluctivity, �0 is the reluctivity of vacuum, Je

is the eddy current density and � is the conductivity. 

B. Calculation of Eddy Current Loss 

The eddy current loss Wed is given as follows [3]: 
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where, � is the period of the eddy current waveform, Ve is the 
region of the conductor with the eddy current, Je is the eddy 
current density and � is the conductivity.

C. Calculation of Hysteresis Loss 

The hysteresis loss Why taking into account the major and 
minor loops of the hysteresis loop can be estimated as follows 
[4]:
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where, Kh is the coefficient of the hysteresis loss, D is the 
density of the steel sheet, T is the period of analysis time, NE
is the number of the elements in the steel sheet and �Vi is the 
volume of the i-th element. Npr 

i, Np��
i and Npz

i are the number 
of the maximum or minimum value of the flux density of the 
radial direction, the rotation direction and the z-direction of 
the i-th element, respectively. Bmr

ij, Bm�

ij and Bmz
ij are the 

amplitude of the flux density of major and minor hysteresis 
loops of the radial direction, the rotation direction and the z-
direction, respectively. 

EDDY CURRENT ANALYSIS OF 
A PIECE OF SILICON STEEL SHEET 

A. Analyzed Model and Condition 

Fig. 1 shows the analyzed model of a piece of silicon steel 
sheet, which thickness is 0.5mm, of a SPM motor. It is 1/8 of 
the whole region because of the symmetry and the periodicity. 
The analyzed SPM motor is built up by 80 silicon steel sheets. 

(5)
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In this case, the rotor rotates 1500rpm by another motor to 
clarify the iron loss without a coil current. 

B. Results and Discussion 

Fig. 2 shows the eddy current loss and hysteresis loss. It is 
found that the 3-D analysis value is slightly larger than the 2-
D analysis[4] value which is taking into no account the skin 
effects. It is found that the skin effects in a piece of silicon 
steel sheet increase the eddy current loss.  

(a) plan view (x-y plane)

(b) flont view (x-z plane)                 Fig. 2. Eddy current loss 
Fig. 1. Analyzed model.                                 and hysteresis loss.

EDDY CURRENT ANALYSIS OF PERMNENT MAGNETS 

A. Analyzed Model and Condition 

Fig. 3 shows the analyzed model. It is 1/4 of the whole 
region because of the periodicity. We calculate two type 
models. One is with the overhang of permanent magnet, and 
the other is without the overhang of permanent magnet. The 
analyzed condition is the same as the analysis of a piece of 
silicon steel sheet. However, the skin effects in the cores are 
not taken into account. 

Fig. 3. Analyzed model (1/4 region, with overhang model). 

B. Results and Discussion 

Fig. 4 shows the contours of eddy current loss in the 
permanent magnet. It is found the large eddy current loss on 
the surface at the center of the permanent magnet. In the case 
of the calculation of the overhang model, it is also found that 
there are eddy current loss in the overhang area of the 
permanent magnet.  

Fig. 5 shows the eddy current loss in the permanent magnet 
and the iron loss in the cores. It is found that the overhang of 
the permanent magnet increases the iron loss in the cores as 
well as the eddy current loss in the permanent magnet. 

Fig. 4. Contours of eddy current    Fig. 5. eddy current loss in permanent  
loss in permanent magnet.                magnet and iron loss in cores.         

CONCLUSIONS

In this paper, we calculate the eddy current loss and the 
hysteresis loss in a piece of silicon steel sheet, and the eddy 
current loss in the permanent magnet in a SPM motor using 
the 3-D finite element method. As the results of computation, 
it is found that the skin effects in a piece of silicon steel sheet 
increase the eddy current loss, and the overhang of the 
permanent magnet increases the iron loss of cores as well as 
the eddy current loss in the permanent magnet. The 
usefulness of the 3-D eddy current analysis is confirmed by 
this analysis of a SPM motor. 
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Abstract � This paper describes research on crack shape 
reconstruction in ferromagnetic materials using a novel fast numerical 
simulation method. The fast numerical method developed here, which 
can treat ferromagnetic materials, is an extension of a pre-computed 
database approach based on the reduced magnetic vector potential 
method. It provides a fast forward simulator about 80 times faster than a 
conventional one even in the case of ferromagnetic materials without 
losing accuracy. The fast simulator is applied to the inverse problem of 
ECT, crack shape reconstruction, and results of some EDM cracks on a 
ferromagnetic plate are shown. 

INTRODUCTION

Eddy current testing (ECT) is a nondestructive testing 
method of metal materials. Numerical analysis methods are 
applied to predict the ECT signals, to aid the design of ECT 
probes, and to reconstruct the crack shape from its ECT 
signals. Research of forward and inverse problems of ECT are 
carried out in these few years and great results are achieved. 

For the non-ferromagnetic materials, high accuracy of some 
numerical simulation techniques has been demonstrated and 
several fast computational methods are presented. Z. Chen 
and K. Miya [1] presented a fast analysis method using a 
small part of the inverse matrix of the coefficient matrix and 
FEM-BEM. H. Huang and T. Takagi [2] also presented a pre-
computed database approach based on edge based finite 
element and reduced magnetic vector potential (Ar) method 
[3]. The ECT signals can be achieved in short CPU time with 
high precision, which allows the inverse problems to be 
solved in practical time. Up to now, inverse problems from 
ECT signals of a single EDM crack of non-ferromagnetic 
materials have already been solved. Some problems remained 
for natural cracks and multi-cracks, but few papers have 
solved the ECT inverse problems of ferromagnetic materials. 

The numerical analysis method based on edge based FEM 
and Ar method [3] can be applied to ferromagnetic material 
problems. It is verified by axisymmetric FEM program as well 
as the benchmark problems proposed by the Japan Society of 
Applied Electromagnetics and Mechanics (JSAEM). 
However, numerical analysis of ferromagnetic materials 
remains a hard and time-consuming job. The fast analysis 
method [2] based on Ar method is extended to solve the 
forward and inverse problems when ferromagnetic noise 
source exists [4]. However, this research [1,2,4] is restricted 
that a crack exists in non-ferromagnetic materials only. 

Recently, a novel fast method [5] is proposed by the 
extension of the pre-computed database approach based on the 
Ar method. Different from the improvement in [4], not only 
governing equations but also the expressions of ECT signals 

are newly developed. This method can be applied to the ECT 
of ferromagnetic materials, and computing time is reduced 
significantly. In this paper, the novel fast simulator is applied 
to ECT inverse problem of ferromagnetic materials. For the 
first time, the crack sizing in ferromagnetic materials is 
considered and excellent reconstruction results are shown. 

FAST SIMULATION METHOD OF FERROMAGNETIC MATERIALS

Systems with and without a crack are considered as shown 
in Fig. 1, where the source in the figure is the exciting current 
in a coil, the conductor is a sample going to be tested. Instead 
of a crack, a secondary source is introduced [2,4,5]. The 
region includes the crack is called “suspect region” hereafter. 
The secondary source includes two parts when considering 
ferromagnetic materials: a secondary electric current source 
due to the change of conductivity and a secondary magnetic 
current source due to the change of permeability. More details 
of this fast simulator can be found in references [2,4,5] 

Denoting exciting source region by superscript s and crack 
region by superscript f, two sets of alternating current sources 
may be considered: s

eJ  and s
mJ  are exciting electric and 

magnetic source current density respectively, and f
eJ  and f

mJ
are secondary �sources (exists in the crack region f only). 
Considering that s

eJ  exists only in source region s and s
mJ is

zero, the reciprocity theorem appears as follow: 

s f f

f s s f s f
e e mdV dV dV

� �

E J E J H J
W

× = × - ×ò ò ò .     (1)

The left-hand side is the energy change 2I Z� , thus the 
impedance change of the coil can be computed by the 
integration inside the crack region only. In order to deduce the 
expression of the secondary electric and magnetic current 
source, the generalized Maxwell equations including both 
electric and magnetic sources are considered. As a result, the 
expressions are finally obtained as follows [5]: 
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Fig. 1. Secondary source due to the crack 

Saratoga Springs, New York USA 
July 13 - 17, 2003

Record of the 14th Compumag Conference on the Computation of Electromagnetic Fields, July 2003



INVERSE ANALYSIS METHOD

It is a normal approach to solve inverse problems by 
minimizing the least square error function between the 
estimated signals and observation signals. The following 
evaluation function is used: 
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i

i
N

i

i
obs

i SSxSxJ ,         (4) 

where x  is the vector characterizing the shape of the cracks, 
)(comp xSi  are the predicted signals related to the vector x , and 

iSobs  are the observation signals. posN  is the observation points. 
Initial shape used here corresponds the case when half of 

the depth of the suspect region is cracked. Crack shape 
reconstruction is performed by the combination of the fast 
forward ECT simulator and the steepest descent method. Flow 
chart of the inverse scheme is shown in Fig. 2. 

RESULTS AND DISCUSSIONS

ECT applied to the inspection of a ferromagnetic metal 
plate is simulated by numerical methods. The size of the plate 
is 20�20�1.25mm3, and the size of a suspect region is 
6�0.2�1.25mm3, where 0.2mm is the width and 6mm is the 
length. Relative permeability and conductivity of the 
conductor is 100 and 106S/m respectively. The pancake coil 
(140 turns) is used for the inspection, whose inner diameter is 
1.2mm, outer diameter is 3.2mm, and height is 0.8mm. 

The results of the conventional Ar method [3] are 
compared with those of the fast simulation method, excellent 
agreements are shown [5]. Using exciting frequency of 
1.5kHz, the pancake probe moves along the direction of the 
crack from -5mm to 5mm by 1mm step. Comparisons of 
computational costs are shown in table I. The fast forward 
simulator presented here is about 80 times faster than a 
conventional one with same computational accuracy. 

Applying this fast forward analysis method, crack 
reconstruction is performed by a parameter estimation method. 
Using a steepest decent method, the number of iteration will 
be large but total computational time will be short because of 
the fast simulator. Some fixed width (0.2mm) EDM cracks are 
considered within the suspect region. ECT signals from 
forward numerical analysis are used. Reconstructed crack 
shapes are shown in Fig. 3. ID and OD in the captions indicate 
the cracks on the same side and the opposite side of the probe 
respectively. Both depth and length of the cracks are 
reconstructed satisfyingly comparing the true shapes shown 
by squares within the error of 0.5% in one or two minutes. 

CONCLUSIONS

A Novel fast simulator and its applications to ECT inverse 
problems of ferromagnetic materials are discussed. 
1. The fast forward simulator of ECT of ferromagnetic 

materials is about 80 times faster than a conventional 
method and still have the same computational accuracy. 

2. Crack sizing in the ferromagnetic materials are performed. 
Satisfactory results are obtained in practical time by 
applying the fast simulator. 
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TABLE I. COMPARISON OF THE PRESENT AND CONVENTION METHODS

 Computer Nodes Elements Time 
Present 
Method VT alpha667 84* 30* 8 s 

Conventional 
Method VT alpha667 6460 5472 660 s 

* Values correspond to a suspect region 

START

Initial Shape

Fast Simulator

Converge ?

Shape Correction

END

Converge Criterion:
Error J <0.001
or ƒ ¢J <0.0001

yes
no

Fig. 2. Flow chart of the inverse analysis 
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Fig. 3. Reconstruction results of EDM cracks on a ferromagnetic plate 
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Abstract – This paper deals with the modeling of eddy currents
generated by arc motion during opening phases of circuit breakers. Two
kinds of modeling are tested. While the first one consists in determining
eddy currents in splitter plates, the second one is devoted to the
calculation of eddy currents in electrodes. All simulations are carried out
with a lagrangian T-ΦΦΦΦ FEM formulation and no new mesh at each time
step is required.

I. INTRODUCTION

The goal of circuit breakers is to switch off currents in
electric circuits. During this process, the contact opening
ignites an electric arc which slides between two electrodes and
is extinguished in splitter plates.

The force that yields the arc motion has two origins. The
first one is the loop effect (the trend to increase the self-
inductance of the circuit composed by the electrodes and the
arc itself). The second one is due to the presence of
ferromagnetic splitter plates which creates a classic reluctance
variation effect and provides an arc attraction (see Fig. 1).

v

Arc

ElectrodeCurrent

loop

Splitter plate

F

Fig.1. Circuit breaker with electrodes, splitter plates, arc and representation of
loop effect.

The calculus of the force acting on arc has led to numerous
previous works [1]. In most part of them, only magnetostatic
approaches are provided. However, the motion of the arc
creates eddy currents in both electrodes and splitter plates.
These eddy currents limit the force and decrease the
performance of the current interruption process. In order to
increase the efficiency of circuit breakers, it is then necessary
to develop accurate models to calculate these eddy currents.

II. FEM FORMULATION

In this paper, we are focussed on electrotechnical aspects.
So, we have defined a very simple model for the arc. It is
considered as a line with a square section and a constant
translation velocity v is affected to it. Previous works have
shown that eddy current in arc can be neglected [2]. It is then
possible to consider that the current density in it is uniform.

Two kinds of description can be used to describe moving
conductors [3]. In the Eulerian approach, only one resolution
is needed. It leads to low CPU computation times but it is
limited to invariant geometries and requires upwind elements.
To take into account the specific geometry of our device, it is
necessary to develop a Lagrangian description, where each

moving conductor has its own co-ordinate system. A step by
step resolution is adopted and, at each time step, the arc
position is shifted of a distance of v×∆t. The following
equations are solved by a finite difference time-stepping
approach with an implicit scheme. In conducting regions with
a translation motion, we have:

dt

)µ(d
)(

H
Hcurlcurl −= (1)

0)µ(div =H (2)

where ρ is the conductivity of the material, µ is the
permeability and H is the magnetic field. d/dt denotes the
convective derivative. In the air, we only have to solve (2).

To solve (1) and (2), a T-Φ formulation based on the
electric vector potential T and scalar magnetic potential Φ [4]
with nodal approximation is used. The expression of the field
and the current are then:

gradTH −= (3)

TcurlJ = (4)

This formulation has two advantages. Firstly, it leads to one
unknown per node in the air region and secondly it ensures
high current density conservation in conductors that is
convenient for Lorentz force calculation.

To limit CPU times and validate our model, we have
decided to separate the evaluation of eddy current in splitter
plates and in electrodes. It is based under the assumption that
eddy currents in one region does not influence the other one.

III. EDDY CURRENTS EFFECT IN SPLITTER PLATES

In this section, eddy currents in the electrodes are
neglected. Only reluctance effect is then evaluated. It is then
possible to take into account the effect of the source current
(electrodes + arc) with a simple moving inductor. To restore
the Ampere’s law, it is convenient to reduce the potential Φ
with respect to the current in the inductor. We have in the air
region:

Φ−= gradTH 0ind (5)

where T0ind is the field created by the inductor and calculated
by Biot and Savart’s formula.

In the splitter plates region, in order to circumvent the so-
called cancellation error in ferromagnetic part, Φ is reduced
only with respect to eddy currents with a jump condition at the
interface with the air region:

Φ−= gradTH f (6)

It remains to introduce (5) and (6) in (1) and (2). At each
time step, the position of the inductor is changed and a new
T0ind is calculated. After resolution, Tf and Φ are obtained.
Eddy currents density in splitter plates is then calculated with
the following expression:

fTcurlJ = (7)

Eddy Currents Effects in Circuit Breakers During Arc Displacement Phase
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This formulation has been tested on a geometry composed
of three splitter plates. Figure 2 shows eddy currents density
and figure 3 the Lorentz force acting on the arc (i.e. J×B
integrated on the volume of the arc).

v

Fig. 2. Eddy current density (A/m2) in splitter plates when the arc enters the
slots (v=20m/s, ρ=1.107Ω/m , µr=1000, I=1000A)
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Fig. 3. Force (N) acting on arc versus arc position. Comparison between loop
effect without any splitter plate (analytical calculation [2]), magnetostatic
force due to splitter plates and magnetostatic force combined with eddy
currents effects.

IV. EDDY CURRENTS EFFECTS IN ELECTRODES

In this section, we are focussed on eddy currents in
electrodes (i.e. the loop effect), splitters plates are then
replaced by air. Like in previous section, it is necessary to
restore Ampere’s theorem. Two kinds of conductors generate
source field: the arc and the electrodes. The arc is still without
any eddy currents and an inductor model it. Its effect T0arc is
still calculated by Biot and Savart’s formula. However, it is
necessary to introduce another auxiliary vector potential T0elec

which is created by the two electrodes. Two approaches are
possible to calculate T0elec

The first one is to use an inductor, which crosses the
electrode and carries total current [3]. T0elec is then calculated
by Biot and Savart’s law. The expression of T0 is then strictly
equivalent to T0ind in previous section. The main advantage of
this approach is its convenience of implementation to take into
account the motion of the arc. However, this method needs a
high mesh density everywhere in the conductor and is often
too much memory consuming.

We preferred to use a preliminary static current flow. This
is carried out by a FEM resolution imposing the potential on
the output and the input faces of the electrode and a Newman
boundary condition elsewhere. We obtain in each electrode i a

static current density J0i. T0eleci is then calculated by solving a
second FEM system:

0JTcurl 00 =− 2
ieleci )( (8)

The magnetic expression of the field in air region is:

Φ−+= �
=

gradTTH 00
2,1i

eleciarc (9)

where Φ is then reduced with respect of current sources.
In the electrodes, Φ is reduced with respect to currents sources
and eddy currents:

Φ−++= �
=

gradTTTH 00
2,1i

feleciarc (10)

After these two preliminary FEM resolutions, it remains to
introduce (9) and (10) in (1) and (2). Each step, the arc is
displaced to obtained a new T0arc and the boundary conditions
of the static current flow resolution are changed to obtained
new T0eleci. Then, the global system is solved. The total current
in the electrode i is:

if 0JTcurlJ += (11)

We applied this approach to an electrodes geometry (see
Fig. 4). Force acting on arc has been computed as described in
previous section.

v

Fig. 4. Eddy currents density (A/m2) in electrodes (v=20m/s, ρ=5.107Ω/m,
µr=1, I=1000A). Only half geometry is represented.

V. CONCLUSIONS AND PERSPECTIVES

We have developed new formulations to calculate eddy
currents that appear in a circuit breaker during current
interruption phases. These two formulations can be combined
to obtain a global model. Moreover, it is possible to apply it
with distorted arc models and with non-constant velocity. The
main advantage of this approach is that no new mesh at each
time step is required. Full paper will give more details about
the influence of eddy currents on force acting on arc versus its
speed and versus the circuit breaker geometry.
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Generalization of the ideal crack model in Eddy-Current Testing 
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Abstract �For the ideal cracks, in Eddy-Current Testing (ECT), 
the field-flaw is equivalent to a currents dipoles layer on its surface. 
This model proved very powerful, as well on the level of the accurating 
as of the computing CPU time. The goal of this paper is to improve this 
model to take account of an inclination, a low conductivity and low 
thickness of the crack. 

INTRODUCTION

The thin crack problem in ECT - i.e. the crack width e
(Fig. 1) is small compared to its other dimensions and to the 
skin depth �  - constitutes a major difficulty for the simula-
tion. It is commonly assumed that a surface crack is “ideal”: 
being infinitesimally thin and allowing no current to flow 
across it. Then, Bowler [1] showed that the crack is equiva-
lent to a currents dipoles surface of density np p� , where 
n  is the  normal of the crack (Fig. 1). A boundary integral 
method is used because only the flaw domain has to be 
meshed. The density p  is solution of an integral equation on 
the surface crack. The variation Z�  of the coil impedance is 
directly obtained from this density. 

Because of the hypersingular kernel of this equation, a 
regularization method is required to solve it [2]. This is ap-
plied to compute the density p  for a straight crack, i.e. 

0��  (Fig. 1), using a collocation method with second order 
shape functions. The case of two straight parallel cracks in a 
tested piece was treated in [3]. A particular interest was 
related to the representation of the eddy-current distribution 
in the cracks neighborhood which posed a problem of 
evaluation of quasi-singular integrals. 

The goal of this paper is to generalize the ideal crack 
model to take into account others parameters: equivalent 
crack conductivity f� , low thickness e  and the inclination 
� .

α

t t
n

1 2dtested
piece

crack S

x
y

zcoil e
O

Fig. 1.  Schematic configuration for the crack detection. 

FORMULATIONS

The electromagnetic values are dimensionless. 

Low Crack Conductivity 

The closure of crack may ultimately produce electrical 
contacts. In order to simulate the effects of current leakage 
across crack, an equivalent conductivity f�  of the crack is 
introduced. Then, the flow crossing this surface is propor-
tional to the density p  [4]. Let us define the relative conduc-
tance � :

.
ef

f �

��

�

�

�

�  (1) 

The eddy-current J  is related to the density p  by the fol-
lowing adimensional relation: 

�
���

S
r pSj )(rr)p(r),n.G(rFP).n(rJ fff0 �d2 ,  (2) 

with 0J : incident current, FP : Finite Part of Hadamard, and 
G : electric-electric Green tensor in the tested piece [1]. 

Thin Thick Model 

In the ideal crack model, a term, corresponding to the en-
ergy change in the crack volume, is neglected in the expres-
sion of the impedance change [5]. This term 0P  is written: 

�d0 �
�

V
jP .AJ0 , (3) 

where A : the magnetic vector potential with the Coulomb 
gauge. This potential is continuous through the crack [5]. If 
it is supposed constant on the thickness e  then it can be 
proved that AJA j�  is given by integrals of the density p
on the crack surface: 

� �

,d)()(

d)()(

d)()()(

,0

,

ifR

fiffA

fffA

.trpr,rG

rr,r.t)(rJ)(rJ

rr,rFPr).n(rJ

�

�

�
�

�

�
�

�	�

�	

�

�

�

S
r

S
rntr

S
rnns

S

Spg

Spgp

i

�

where Sg : elementary solution of the Poisson equation in 
the whole space, Rg : reflexion term of the elementary solu-

(4)
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tion of the Poisson equation in the piece test domain, and 
RG : reflexion terms of G . The proof of the expression of 

AJ  will be detailed in the full paper. 

Inclined Crack 

If the crack is straight ( 0�� ) then eddy-current on the 
crack deduces directly from the differentiation of the density 
p . On the other hand, if the crack is inclined of an angle � ,

it is necessary to take into account the reflexion terms: 

� �

i

fif0f

.tpG

r.trJrJ

�

�

�
�

�

�
�

�	�

� r
S
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t
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)(),(

)(
2

)()( ,
�

�

 (5) 

where, � �2,1�i , 1���  and designates the positive or 
negative of the crack face. 

RESULTS

In order to validate the thin thick model, the TEAM 
Workshop Problem n° 15 [1] has been solved. The computa-
tion of the ideal crack was improved by using special ele-
ments at the crack edges (Fig. 2). When we take account of 
the thickness, the theoretical value differs from less than 1% 
from the experiment while in the case of the ideal crack it 
was about 2.5% with special elements (Fig. 2). 

For the same problem, an inclination of the crack is in-
troduced. The figure 3 shows signatures associated with a 
displacement of sensor according to )(Oy  axis for different 
inclinations. 

The figure 3 shows the distribution of the eddy-current 
for a crack at the depth ��d  with �� 45� , the others pa-
rameters being the same as previous. 

CONCLUSION

The ideal crack model was improved by introducing 
three parameters: f� , e  and � . By adding a term to the 
impedance change, a low thickness of the crack can be take 
account with a good agreement with experiment. The limit 
of validity of the thin thick model will be developed in the 
extended paper. The study of the influence of these parame-
ters allows determining the relevance of their taking into 
account for the inverse problem. 
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Fig. 2. Convergence with (solid line) and without (dashed lines) the thick-
ness e  of the crack for the coil position )0,9(),( mmmmyx � .

Fig. 3.  Signature for three different inclinations of the crack. 

Fig. 4.  Eddy-current distribution in the plane 0�x  for an inclined crack 
( )45���  for the coil position )0,9(),( mmmmyx � .
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Three-dimensional FEM analysis of an eddy current braking system
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��������—We present a method and some related
results for the calculation of eddy currents in a 3D
braking system. The approximation is based on the
mortar element method combined with finite differ-
ences in time and node/edge elements in space.

Introduction

This contribution deals with the numerical treatment
of three-dimensional eddy current problems in moving
rigid bodies, as for example a braking system. We ad-
dress the question how to calculate the electromagnetic
fields if the motion of the bodies is known in advance.
In Lagrange variables, it may be less expensive from the
computational point of view the use a method that al-
lows to work with nonmatching grids at the sliding inter-
face and avoids re-meshing procedures. The mortar ele-
ment method (see [3] for the problem we consider here) is
a nonconforming nonoverlapping domain decomposition
technique which allows for independent meshes in adja-
cent subdomains. The idea of the method is to weakly
impose the transmission conditions at the interfaces by
means of Lagrange multipliers suitably chosen to ensure
optimal properties on the discrete problem.

The model

The mathematical model describing the distribution of
eddy currents in conductors at low frequencies is given
by the quasi-stationary Maxwell’s equations [1], [2]. The
magnetic quantities can be eliminated from the equations
and set up a formulation in terms of the electric ones,
as in [5]. Here we do the other way, by restricting our-
selves to the so called T − ϕ formulation of the magne-
todynamic problem. More in detail, let Ω ⊂ IR3 be an
open bounded set; we assume that Ω = Ωc ∪Ωnc where Ωc

is the conducting part and Ωnc is the non-conducting one
(containing airgaps and ferromagnetic parts, as in Fig-
ure 1 (left)). For the current density J, the condition
divJ = 0 suggests the introduction of a vector potential T̃
such that J = curl T̃. Then, in Ωc, the difference between
T̃ and the magnetic field H can be written as the gradi-
ent of a scalar function ϕ̃. A similar argument holds for
Ωnc where we assume knowing a vector potential T0 such
that J0 = curlT0, where J0 is a given external source.
Being J0 zero in Ωc, the magnetic field H is given by
T̃ − grad ϕ̃ in Ωc and T0 − grad ϕ̃ in Ωnc. Thus, we ob-
tain a magnetodynamic problem in terms of the vector
potential T̃ defined only in Ωc and the scalar potential ϕ̃
defined everywhere in Ω. The system is completed with
boundary conditions on ∂Ω and interface conditions on
γc = ∂Ωc\(∂Ωc∩∂Ω) stating, e.g., that Ω̃ is continuous and
T̃×nc = 0. The magnetic permeability µ and the electric

motion
sense

µ

µ

0

0

µ0

J0

conductor

1

2

µ0

µ
0

electromagnet

air

µ

µ

Fig. 1. Domain geometry on the x-z section.

conductivity σ are assumed to be linear, bounded, time-
independent scalar functions. We set H0,γc (curl, Ωc) =
{v ∈ L2(Ωc)

3|curlv ∈ L2(Ωc)
3 with (v × nc)|γc = 0} and

H1
0,γnc

(Ω) = {u ∈ L2(Ω)| grad u ∈ L2(Ω)3 with ϕ|γnc = 0},
where γnc ⊂ ∂Ω with positive measure. The variational
formulation of the considered problem reads: given T0 ∈
L2(Ωnc)

3, find T̃ ∈ H0,γc (curl, Ωc) and ϕ̃ ∈ H1
0,γnc

(Ω) s.t.
d
dt

∫
Ωc

µ(T̃ − grad ϕ̃) · w +
∫
Ωc

1
σ

curl T̃ · curl w

+
∫

∂Ωc\γc

1
σ
(nc × curl T̃) · w = 0, ∀w ∈ H0,γc(curl, Ωc),

− d
dt

∫
Ωc

µ T̃ · grad v + d
dt

∫
Ω

µ grad ϕ̃ · grad v

− d
dt

∫
∂Ω\γnc

µ∂ϕ̃
∂n

v = d
dt

∫
Ωnc

µT0 · grad v, ∀ v ∈ H1
0,γnc

(Ω).

(1)
It is easy to see that if (T̃, ϕ̃) is a solution of (1), then

(T̃ + ∇φ, ϕ̃ + φ), φ ∈ H1
0 (Ωc), is a solution as well. In

order to get uniqueness, we can choose φ such that ϕ =
ϕ̃ + φ is harmonic on Ωc. To this purpose, as in [4], we
involve the harmonic extension operator H satisfying, for
v ∈ H1/2(∂Ωc), the conditions Hv ∈ H1(Ωc), (Hv)|∂Ωc

= v

and
∫
Ωc

gradHv grad w = 0, ∀w ∈ H1
0 (Ωc). Problem (1)

is then modified as follows: given T0 ∈ L2(Ωnc)
3, find

T ∈ H0,γc (curl, Ωc) and ϕ ∈ H1
0,γnc

(Ω) s.t.
d
dt

∫
Ωc

µ(T − gradHϕ|∂Ωc
) · w +

∫
Ωc

1
σ

curlT · curlw

+
∫

∂Ωc\γc

1
σ
(nc × curlT) · w = 0, ∀w ∈ H0,γc(curl, Ωc),

− d
dt

∫
Ωc

µT · gradHv|∂Ωc
+ d

dt

∫
Ωnc

µ grad ϕ · grad v

− d
dt

∫
∂Ω\γnc

µ∂ϕ
∂n

v = d
dt

∫
Ωnc

µT0 · grad v, ∀ v ∈ H1
0,γnc

(Ω).

(2)
As proved in [4], problem (2) has a unique solution.
Due to symmetry reasons, from now on we work in half

domain, as in Figure 1 (right). When dealing with mov-
ing structures, translating in our case, we suppose that
the domain Ω is divided into (at least) two sub-domains
Ω1 and Ω2 separated by the interface Γ; Ω1 can move in the
x-direction with a speed V . Here we set Ω1 = Ωc∪{airgap}
and Ω2 = Ω \ Ω1. We call rt : Ω1 → Ω1 the operator at
time t which moves the domain Ω1 of the quantity s = V t
and r−t the inverse operator. If V = 0, rt is the identity
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operator. We assume the existence of a reference configu-
ration, say Ω1(0), and we denote by Ω1(t) := rtΩ1(0): the
material particle occupies a position x in the reference
picture Ω1(0) and its position in the actual configuration
Ω1(t) at time t will be rtx. Defined Ω(0) = Ω1(0) ∪ Ω2, in
the piecewise Lagrange approach we look for (T1, ϕ1) and
(0, ϕ2) such that T1 = 0 in the airgap contained in Ω1

and ϕk, k = 1, 2, verify two time-dependent transmission
conditions at Γ = ∂Ω1(0) ∩ ∂Ω2 that read:

(TC1) ϕ1(r−tx, t) = ϕ2(x, t),

(TC2) µ(r−tx)
∂ϕ1

∂nΓ
(r−tx, t) + µ(x)

∂ϕ2

∂nΓ
(x, t) = 0.

The conditions (TC1) and (TC2) describe, respectively,
the continuity of the two components H × nΓ and B · nΓ

across the interface Γ. In the considered framework, we
introduce the functional space at each time t

U(t) = {(ϕ1, ϕ2) ∈ H1(Ω1) × H1(Ω2) |
ϕ1(r−tx, t) = ϕ2(x, t) , ∀x ∈ Γ , ϕk|∂Ωk∩γnc = 0 };

(3)

the new variational formulation is then given by (2) re-
placing w ∈ H0,γc (curl, Ωc) by w1 ∈ H(curl, Ω1) that verifies
w1 = 0 in the airgap contained in Ω1 and v ∈ H1

0,γnc
(Ω) by

v ∈ U(t). Moreover,
∫
Ω

µ grad ϕ · grad v has no more sense
and has to be replaced by

∑2

k=1

∫
Ωk

µ|Ωk
grad ϕk · grad vk.

Note that the essential condition (TC1) is strongly im-
posed in the definition of U , while the natural one (TC2)
can be recovered by integrating by parts.

We now discretize the new variational formulation by
using edge elements for T1 and node elements for ϕk on
tetrahedrical meshes. Let Tk,h be two triangulations of
Ωk, k = 1, 2, independently generated (h is the maximum
size of the mesh tetrahedra); we then introduce the edge
element space X1,h, the node element ones Yk,h, and, as
explained in [3], Mh a proper subspace of the trace space
Wh = {ψ ∈ L2(Γ) | ∃v2,h ∈ Y2,h such that (v2,h)|Γ = ψ}. In
the mortar setting, the value at Γ of each discrete function
on the mortar (master) side Ω1 will define weakly the val-
ues at Γ of the discrete function on the nonmortar (slave)
side Ω2. The discrete version of U(t) is the space

Uh(t) = {(ϕ1,h, ϕ2,h) ∈ Y1,h × Y2,h | ϕk|∂Ωk∩γnc = 0 and
∫
Γ
(ϕ1,h(r−tx, t) − ϕ2,h(x, t))ψh(x) dΓ = 0, ∀ψh ∈ Mh} .

The presence of the weak coupling condition prevents
Uh(t) from being a subspace of U(t), i.e., we are using a
nonconforming method to approximate the scalar poten-
tial ϕ. There are two main difficulties (see [3] for details):
the construction of a basis for the Lagrange multiplier
space Mh and the computation of

∫
Γ

ϕ1,h ψh with ϕ1,h and
ψh leaving on different (a priori nonmatching) grids.

To write the discrete version of the new variational
problem in a matrix form, we involve a rectangular ma-
trix Q that allows for coupling at Γ the information com-
ing from Ω1 and Ω2. The fully discrete problem results
from the application of a first order implicit Euler scheme
with time step δt to discretize the time variable. The final
system has a matrix form

(Mc + δtAc)T
n+1 + BQϕn+1 = Fc,

Q̃t
n+1B

t Tn+1 + Q̃t
n+1KQn+1 ϕn+1 = Q̃t

n+1F.
(4)

The vectors Fc and F depend on the approximations of T
and ϕ at the previous time step (F depends also on T0).
Mc, Ac are the mass and stiffness matrices with edge ele-
ments, K is the stiffness matrix with node elements, B is
the matrix associated to the bilinear form −

∫
Ω1

gradHϕ·w
and Bt is associated to −

∫
Ω1

T · gradHv. Matrix Qn+1 is
responsible for the coupling at the interface Γ at time tn+1

and Q̃t
n+1 is its “transposed”. There are at least two ways

of computing
∫
Γ

ϕ1,h ψh while preserving the optimality of
the nonconforming approximation. The first is based on
the introduction of a third discretization of Γ, which is
independent of the ones induced by Tk,h and on which
we define a quadrature formula, see [5]. In this case,
Q̃t

n+1 = Qt
n+1 and problem (4) has a symmetric matrix

that can be inverted by a Conjugate Gradient procedure.
In the second case, we do not need a third mesh on Γ; the
integral

∫
Γ

ϕ1,h ψh is computed by means of a quadrature
formula defined, for Qn+1, on the slave (Ω2) side of Γ and,
for Q̃t

n+1, on the master (Ω1) side of Γ, see [3]. In this
case, Q̃t

n+1 	= Qt
n+1 and problem (4) has a nonsymmetric

matrix that can be inverted by a stabilised Bi-Conjugate
Gradient procedure.

Results

Figure 2 shows, on the left, the distribution of B in a
y-z section of the domain and, on the right, the distribu-
tion of J in a x-y section of the bottom conductor. Both
distributions are computed in half domain (see Figure 1
(right)): the electromagnet heigth is 55 mm, the coil radii
are 55 mm and 45 mm. Note that T0 can be analytically de-
fined thank to the simple (circular) geometry of the coils.
The airgap is 1.5 mm, the conductor is 130 × 150 × 15 mm3

and Ω is a cube of 150 mm per side. The data are µ = 103 µ0

H/m, σ = 6.67 106 S/m, J0 = 106 A/m2 and δt = 10−3 s.

Fig. 2. (Left) Distribution of B in a y-z section of half domain.
(Right) Distribution of J in a x-y section of the bottom conductor.
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Abstract — This paper deals with the eddy current losses in a steel
lamination. In particular, the effect of the finite lamination width on the
local loss density is studied. Taking the analytical expression for the loss
density in an infinitely wide lamination as a reference, a relative loss
density curve (relative losses vs. distance to edge) can be considered for
laminations of various widths, with either a constant surface magnet field
or average induction excitation. It is shown that in the former case this
relative function is independent of the width to thickness ratio, and may
thus present a suitable tool in homogenization techniques.

INTRODUCTION

When performing FE analyses of electromagnetic devices
comprising a stack of ferromagnetic laminations, it is for
practical reasons impossible to model each lamination
separately. As a consequence, it is difficult to accurately
incorporate the iron losses in the FE model, in particular the
eddy current loss (ECL) component, which depends on the eddy 
current loops in the individual laminations. The eddy current
losses can be accounted for in an approximate way by means of 
homogenization techniques. In [1] and [2] such techniques are
proposed for 2D and 3D FE models respectively. In a (linear)
frequency domain calculation, the skin effect can be easily
included. Edge effects, due to the finite width of the
laminations, are ignored as the aforementioned homogenization
techniques are based on 1D lamination models (in which only
the variation throughout the lamination thickness is considered). 
In order to also include the edge effect in a 3D homogenization 
technique, a 2D lamination model [3][4] can be studied. In this
paper is studied the influence of the width of the lamination on
the local ECL density, and is shown that an equivalent
conductivity can be derived that could be applied for including
the edge effect in the homogenization technique for the 3D
model. This is limited to the linear case, for the time being.

2D LAMINATION MODEL

For a lamination (Fig. 1) the 2D harmonic diffusion equation 
expressed in terms of the y component of the magnetic field
strength yH is [3]:

0j2 =−∇ yy HH ωµσ (1)

P. G. Pereirinha is sponsored by the PRODEP PhD Program “4/5.3/PRODEP/2000”.

with ω=2πf the pulsation, µ the magnetic permeability and σ
the electrical conductivity. A constant H on the lamination
boundary, Hs, is either imposed or floating. In the latter case,
the flux or average induction Ba is imposed. The ECL (W/m3)
can be averaged over the thickness d from the FE solution, by

∫=
dJ dzJ

d
P

σ2
1 2

(2)

where J is the amplitude of the sinusoidal eddy currents (A/m2).
In case of an infinitely wide lamination, an analytical
expression of the loss density can be used either in terms of the 
surface magnetic field [3] or the average induction [1][3] 

λλ
λλ

σδ coscosh
sinsinh),(

2

D1 +
−=

d
HfHP s

sHs (3)

( )fFBfdfBP skaaBa
2222

D1 6
1),( σπ= (4)

where the skin effect for (4) is comprised in the dimensionless
function Fsk(f) given by 

λλ
λλ

λ coscosh
sinsinh3

−
−=skF (5)

with λ =d/δ, where σµπδ f/1= is the skin depth.

Fig.1. H and eddy currents in ¼ of a lamination, and dte origin.

APPLICATION EXAMPLE

A steel lamination with σ =4.5x106 S/m, µ=6.667x10-3 H/m
(ν=150 m/H), d=0.5 mm, of various widths w ranging from 2d
to 25d is considered. Different frequencies, ranging from
0.42 Hz to 4.2 kHz (λ =d/δ ranging from 0.1 to 10) are
considered. As, due to the edge effect, the ECL given by (2)

(0,0)

z

x

sH

),,( fzxH d/2

w/2

dte
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start to change as the distance to the edge dte decreases, a
equivalent conductivity σeq (S/m) is introduced that used in (3)
or (4) will give the same results as (2) for each dte:

σ
λλ
λλ

δ
σ

1

D1

2

coscosh
sinsinh1

−







=

+
−=

Hs

Js

J
eq P

P
d
H

P
(6)

σ
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ska

J
eq P

P
FBfd

P

D1
2222 6/
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Fig. 2. PJ/P1DBa (constant Ba) for w/d=3.

From Fig. 2, for constant Ba it can be seen that σeq/σ is
different from 1 on the central zone of the lamination, what
might complicate its use in homogenization techniques.
However this problem does not occur when using Hs constant
(Fig. 3 and Fig. 4) as σeq/σ =1 on the central zone of the
lamination and for a dte<1.5d it can be applied a σeq at the
border of the bulk material, given by a lookup table that
incorporates the values of Fig. 3 and Fig. 4, or by fitted
expressions obtained from the same data, to use in
homogenization technique.
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Fig. 3. PJ/P1DHs (constant Hs) for d/δ =3.
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Fig. 4. PJ/P1DHs (constant Hs) for d/δ=5.

CONCLUSIONS

From the results obtained, the following conclusions can be
presented:

• Using the methodology with constant Ba leads to
PJ/P1DBa (in general) different from 1, and depending on
w/d and d/δ.

• Using the methodology with constant Hs leads to
PJ/P1DHs depending only on d/δ  and equal to 1 for
dte>1.5d.

• It was shown that both methodologies could be related to
an equivalent conductivity, specially the one with Hs
constant that we expect to apply in homogenization
techniques.

In the full paper some more interesting cases and
conclusions will be presented.
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Abstract— Numerical optimization techniques are widely used in
electromagnetical design, but uncertainties in the design variables are
neglected in the majority of cases. A robust formulation of nonlinear
programs that incorporates uncertainties and their effects on target
performance and feasibility directly into the optimization process is
proposed. Applicability and benefits of this method are discussed with
the TEAM Workshop problem 22.

INTRODUCTION

The solutions of electromagnetic design problems from
usual optimization are highly tuned to precise numerical values
of the design variables. In real-world implementations of
designs the values can often only be realized within some
tolerance or they may be affected by external perturbations.
This can result in considerable deterioration of the target
performance and even infeasibility of the implemented design.

With the presented Robust Optimization framework uncer-
tainties in the design variables can be included in the problem
formulation. Given a model of the possible deviations, the
optimization algorithm is forced to converge to a solution that
is optimal regarding the target values and remains feasible in
the whole domain of uncertainty.

PROBLEM FORMULATION

The conventional constrained nonlinear programming prob-
lem often evolving in electromagnetic design is

x
f x

s.t. gi x ≤ i , . . . ,m
(1)

with the vector of the n design variables x ∈ �n, the target
function f and m inequality constraints gi. This formulation
does not account for uncertainties in the design variables.
It contains no information about the behavior of the target
function in a neighborhood of the nominal point, and the
design may become infeasible in the presence of perturbations.

Uncertainty Set A simple model of the possible fluctu-
ations around every nominal point x is introduced [1]. This

Uncertainty Set U x is a compact sub-domain of the design
space and is uniquely defined for every point x ∈ �n. It can
e.g. be modelled as hyper-rectangle centered at x,

U x {ξ ∈ �n x − ∆ ≤ ξ ≤ x ∆} ⊂ �n (2)

where ∆ 1 2 · · n
T ∈ �n is the vector of the

biggest possible variations from the nominal values for all
design variables.

Robust Formulation Problem (1) has to be adjusted in the
presence of uncertainties. Solutions should be robust regarding
target performance and feasibility. For the target function
flat regions with best performance in U are preferred to
steep valleys with the best value at the nominal point. The
constraints have to be satisfied for all points in U for robust
solutions.

In the majority of cases it is essential to treat both demands
simultaneously. Feasibility robustness ascertains the effects of
uncertainty in relation to the constraints and target robustness
detects the effects of the abberations to the quality function.
The following formulation combines both tasks,

x ξ∈U(x)
f ξ

s.t.
ξ∈U(x)

gi ξ ≤ i , . . . ,m
(3)

The resulting target function is continuous but not contin-
uously partially differentiable at unconstrained minimizers
[2]. The new constraint functions are also continuous but
possibly not continuously partially differentiable at certain
points, depending on the shape of the original constraints [1].

ROBUST OPTIMIZATION PROCEDURE

Uncertainty Set Evaluation It is tried to identify the worst
values of the target functions and constraints in U to directly
compute the max-functions. The worst values are assumed to
appear at one of the vertices of the uncertainty set. This is true
if the original functions gi and f , respectively, are convex or if
all their partial derivatives with respect to the design variables
do not change the sign in a set F ⊇ U. Instead of evaluating
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all vertices, a prediction for the worst one is used [2]. Two
function values, at xi+ and xi−, have to be calculated for
every coordinate direction. For a nominal point x0, the point
xi+ is x0 with 1 added in the ith element. The predicted
worst vertex is assumed in the directions where the higher
values were determined,

xpred x0




sign
(
f x1+ − f x1−

)
· 1

· · ·
· · ·

sign
(
f xn+ − f xn−

)
· n




(4)

and the predicted worst value is

ξ∈U(x0)
{f ξ } ≈ f xpred . (5)

For problems where all functions are derived from the
solution of one forward problem, as usual in electromagnetic
design, l · n m problem evaluations are necessary
to estimate all the worst values.

Optimization Algorithm A two step procedure was used to
solve the design problem described in the following section.
First a Genetic Algorithm (GA) was used to find the region of
the global optimum in the design space containing lots of local
minima. The non-differentiable functions are no limitation for
the GA.

In the second step Sequential Quadratic Programming
(SQP) was launched from the solution of the first stage to
explore the local structure of the problem. With some mod-
ifications to the standard SQP algorithm convergence can be
guaranteed for minimax problems [3]. The possible discontinu-
ities in the partial derivatives of the constraint functions were
smoothed implicitly by finite difference gradient calculations.

TEAM PROBLEM 22: SMES DEVICE

Superconducting Magnetic Energy Storage (SMES) systems
consisting of two coaxial solenoids allow the storage of large
amounts of energy in a fairly economical way and can be
rather easily scaled up in size. The optimization of such a
device is the task of the TEAM Workshop problem 22 [4],
where the following objectives have to be satisfied:

• The energy stored in the device should be MJ .
• The stray field along a line at a distance of 10 meters

should be as small as possible.
• The generated magnetic field inside the solenoids must

not violate a certain physical condition which guarantees
superconductivity (quench condition).

The design problem is finding the set of 6 geometrical
parameters and the current densities J1 and J2 that best fit
the objectives. For the robust problem the current densities
were assumed uncertain. The results from optimization runs
with different uncertainties J J1 J2 are shown in
Fig. 1. The upper two and the lower left plot illustrate the stray

Fig. 1. SMES Optimization results for different uncertainties.

field around the nominal solutions. The unperturbed designs
are marked by the black dots. The black rectangles represent
the limits of the corresponding uncertainty sets. For growing
uncertainties the curves get flatter while the stray field at the
nominal points increase. But all the different solutions are
optimal regarding their worst values in U. The lower right plot
shows the constraint function describing the quench condition
in the first coil for J , A/mm2. All points below
the black line are feasible. Only a corner of U touches the
boundary, so the design will not quench if the perturbations
remain within the assumed limits of uncertainty. This solution
illustrates the importance of considering robustness issues for
both target and constraint functions.

CONCLUSION

The presented procedure for performing robust optimization
can find solutions that are insensitive to variations in the design
parameters. The solutions can support the designer in finding
the best trade-off between peak performance tuned to exact pa-
rameter values and accepting a certain amount of uncertainty.
This will be further exploited in the extended paper by directly
comparing optimal designs for varying amounts of uncertainty.
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Abstract�Due to construction tolerances, the performances of actual 
electromagnetic devices differ from those of the nominal design. A 
strategy for the search of robust design solutions against construc-
tion tolerances is here presented. The approach is based on the statis-
tical analysis of the tolerances effects on the Objective Function to 
evaluate. The application of the proposed strategies to the optimal 
design of MRI magnets by a Genetic Algorithm shows the possibility 
to direct the search towards robust solutions. 

INTRODUCTION

The main requirement to fulfil in the optimal design of 
superconducting (SC) magnets for Magnetic Resonance 
Imaging (MRI) is the high uniformity of the magnetic field 
inside a wide Volume of Interest. Unfortunately, in practi-
cal realisations, the actual magnet differs from the optimal 
one due to construction and assembling tolerances [1]. In 
addition, in the normal operating conditions, the generated 
magnetic forces can deform the coils, with the consequence 
that the working geometry is different from the design one 
[2]. In both cases a performances degradation has to be ex-
pected. It is therefore very important to look for robust de-
sign configurations characterised by a reduced sensibility to 
little changes of the magnet geometry. 

IMPACT OF THE TOLERANCES ON THE DESIGN STRATEGY

To design purposes, a SC magnet has to be properly 
modeled by defining the key design parameters and its per-
formance figures. The magnet geometry and the field are 
here supposed to be axially symmetric and the tolerances 
are assumed to not break the symmetry. In real cases, how-
ever, a lack of symmetry could appear and thus the field 
distribution exhibits multipole components [3]: therefore a 
full 3D check of the final design is recommended. 

The optimal design can be formulated in terms of the 
minimization of a suitable Objective Function (OF), able to 
quantify the performance figures as a function of all design 
parameters [4]. Scalar OFs are usually assumed as the 
weighted sum of the different figures (objectives). The 
main design objective is the magnet field uniformity; other 
important requirements are the device compactness and su-
perconducting material volume, which is an index of the to-
tal cost [1]. In addition, a number of geometrical and 

physical constraints have to be considered in the design proc-
ess, including, as an example, the limit on the current density 
in the coils, which must not exceed a critical value, depending 
on the field and on the temperature, in order to preserve the 
SC state.  

The uncertainness associated with assembling tolerances 
has an important effect for the formulation of the optimal de-
sign search. In the following, the main aspects of such impact 
are examined and discussed.  

Assembling tolerances 
When considering the assembling tolerances, the perform-

ances of a possible design solution have to be redefined taking 
into account the uncertainness impact. A possible new defini-
tion of the OF can be its statistical average [4]: 

')'OF()'()(OF
)(

�

�

�

x
xxxx dp (1)

where p(x) is the probability density function (PDF) of the 
configuration described by the parameters vector x and �(x) is 
the tolerances interval around the nominal configuration x.
Mechanical and assembling tolerances are usually modelled as 
random variables with Gaussian PDF. A different approach is 
presented in [6], where just the worst OF on the tolerance 
range boundary is considered: this correspond to the choice of 
an uniform PDF. 

Preliminary step: Design of Experiment 
The introduction of the assembling tolerances in optimal 

design implies a relevant impact on the computational costs 
because, for each trial solution, the computation of the solu-
tion local behaviour is required (see for instance [1]). The in-
crease of the computational load can become too high for the 
available computing resources, especially when the number of 
design parameters is high and the adopted search strategy is 
stochastic. Therefore, techniques for the reduction of the com-
putational burden are crucial.  

Aim of the present paper is to propose a strategy to reduce 
the computational cost by a preliminary ranking of the design 
parameters on the base of the impact of their uncertainness on 
the OF (parametric sensibility) inside the tolerance region. For 
low impact parameters, the average (1) can be, neglected re-
ducing to the classical OF. The ranking is based on a Design 
of Experiment (DOE) type technique, suitably adapted to the 
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requested parametric sensibility evaluation. A number of 
random samples in the feasible regions are selected for 
Monte Carlo Analysis (MCA) around each of them, in or-
der to compute the correlation indices between each design 
parameter and the OF: the larger the correlation index ap-
pears, the more critical is the parameter. In the optimisation 
process just the most critical parameters can then be con-
sidered affected by tolerances, achieving the foreseen re-
duction of the computational cost.  

Another possible ranking index is also proposed: the 
overall sensitivity of each design variable with respect to 
the assembling tolerances is evaluated using the mean value 
over the MCA runs of the ratio OF;¯k(x)/OF(x), where:  

�

�

�

)(
'),',,OF()'()(OF

k

knk1kk dxxxxxp
x

x ��  , (2)

p(xk) is the probability of xk and �(xk) is the tolerances in-
terval of xk. It should be noted that the global effect of the 
variation of a parameter is related to the mean of MCA re-
sults among different test points, while the local effect on 
the solution robustness inside the tolerance range is ex-
pressed by OF;¯k(x)/OF(x) values for each sample point. 

Statistical dependence of design tolerances 
The simplest approach to numerical evaluation of (1) is 

to consider statistical independence among tolerances, as-
suming the joint PDF p(x) as the product of the marginal 
probabilities relative to each parameter: however this strat-
egy is computationally heavy for the evaluation of the inte-
gral in (1). On the other hand, due to technological and 
constructive issues, there could be some dependencies 
among design parameters or tolerances due to machine 
tools and construction methodologies, and advantage can 
be taken by considering that the joint PDF should no longer 
be considered the product of marginal PDF, eventually 
leading to a reduction of the computational cost for evalua-
tion of (1). As an example, for MRI magnets the minimum 
radius of the coils are subjected to the same tolerance. The 
exploitation of such concepts provide a better exploration 
of the search space in the neighborhood (tolerance range) 
of each design trial solution: the integration points can be 
reduced by locating them only in a subregion of �(x),
while keeping the same accuracy. 

PRELIMINARY RESULTS

The practical effectiveness of the proposed method has 
been evaluated with reference to the design of a supercon-
ducting magnet for MRI. The main goals of the device are 
a central magnetic field of 3 T and a field homogeneity of 
2 ppm. Preliminary results are presented here for a test case 
magnet with 4 coils, symmetrically placed with respect to a 
central plane, with the minimum radius and the coil lengths 
kept fixed. There are therefore four design variables: the 

axial position Zb,1 and Zb,2 of the two (respectively inner and 
outer) coils baricentres and the radial thickness �R1 and �R2.
Mechanical tolerances of 1% affect just the inner coil 1 thick-
ness, and have been modelled by using Gaussian distributions. 
The optimal design is performed by using a Genetic Algorithm 
(GA), which is well suited for OF with multiple minima [4]. 
The OF has been assumed as the sum of three terms, related to 
field homogeneity, volume and compactness respectively [5]. 

A MCA has been performed for a set of five test points, 
randomly selected inside the admissible parameter ranges. In 
Table I the Correlation Indices (CI) between the design pa-
rameters and the OF are reported for each test point and for 
each parameter. In addition, the OF for each point is reported. 
Note that the most relevant parameter for the OF is the thick-
ness of the coil 1 either for global and local variations. Conse-
quently, in the optimization phase, just the tolerance on �R1
will be taken into account in (1). 

TABLE I 
CORRELATION INDICES OF THE DESIGN VARIABLES WITH OF

 Zb,1 Zb,2 �R1 �R2 OF 
Point 1 0.214 0.002 -0.940 -0.147 0.199 
Point 2 0.523 0.002 -0.832 0.055 0.042 
Point 3 0.338 0.211 -0.869 -0.115 0.028 
Point 4 0.457 0.053 -0.874 0.072 0.009 
Point 5 0.088 0.052 -0.974 0.015 0.009 

In the full paper, a more detailed discussion about the pro-
posed technique and the ranking indices will included, and ex-
tended results for a larger six coils more realistic magnet will 
be presented, with particular reference to computation al costs 
reduction.
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Abstract- In this paper, the artificial neural network (ANN) is

applied to solve the inverse problem of electric field in SF6 circuit

breaker. Taking the high nonlinear approaching ability of ANN and the

numerical analysis of electromagnetic field into consideration, the

demonstration examples have been solved. From calculation result, it can

be seen that the proposed method is feasible and valid.

INTRODUCTION

Presently, some contributions have been reported using
modern optimization methods, such as genetic algorithm,
simulated annealing, taboo search algorithm and ANN for
solving the global optimization problems [1,2]. And the
inverse problem computation of electric field play a very 
important role for optimizing and investigating the insulation
performance and interrupting characteristic of high voltage
(HV) electrical apparatus. However, there exist many
optimized variables for solving the inverse problem and
longer calculation time is required. For the above
optimization techniques, ANN possesses the ability to 
simulate the intricate nonlinear problem. Moreover, in
application of ANN, some tedious modeling of the
complicated system can be simplified because it is 
unnecessary to know the pre-konwledge of the computation
structure. So ANN is introduced to solve the inverse problem
of electric field in HV SF6 circuit breaker in this paper.

ANN MODEL

Fig.1. Diagram of multi-layer feed-forward ANN 

By determining a rational ANN structure, the intricate
inverse problem can be solved. ANN model with multi-layer
feed-forward network is established, as shown in Fig.1.
Suppose is the output of the unit of the

layer in the iteration step, thus
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Where is the working signal of the unit of the
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AV is the learning objective function, which is the

average of calculation error, that is 
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Where and  is an output

in the iteration step for the unit in output layer, and

is the corresponding teaching patterns. 
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The back propagation method (BP) is applied to correct

weight according to the following approach: 
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NUMERICAL CALCULATION OF DEMONSTRATION EXAMPLES

Simulation of the Nonlinear Oscillating Function
The nonlinear oscillating function is applied to test the

simulation characteristic of ANN with three layers, that is 

x

xy )sin(

1
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0
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x
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The calculation results are shown in Table I, where “Ne”
represents the number of neurons in the hidden layer. For
reflecting the effect of the number of neurons on the mean
squared error in the hidden layer, the training times is fixed at
500. And when the number of neurons in the hidden layer is 7,
the training error is the least and simulation results are shown
in Fig.2.

Fig.3. Calculation configuration of SF6 circuit breaker
1- Stationary main contact 2- Stationary arc contact 3- Nozzle 

4- Movable arc contact 5- Movable main contact 6- Porcelain casing 
A- optimized domain

Fig.4. Zoom of the optimized domain A 
1-The initial electrode contour 2-The optimized electrode contour 

Fig.5. Equal electric potential distribution with optimized contact 

TABLE I. CALCULATION RESULTS

Ne  Mean squared error  Training times   Training time(second)
1      8e-2                500           10.27
2      2e-3                500           49.3
5      3e-7                500           97.6
7      1e-11               500           84.42
9      1e-10               500          108.4
10     3e-11               500           81.57

11     2e-11               500           85.2
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Fig.2. Simulation results of the nonlinear oscillating function 

OPTIMIZATION OF THE ELECTRODE CONTOUR IN SF6 CIRCUIT BREAKER

The electrode contour of HV SF6 circuit breaker is
optimized using the proposed method. The objective function
is , Where represents the electric
field intensity of the electrode. For the concrete structure, 8 
neurons in input layer, which represents the corresponding X
coordinates of 8 equated optimized points along Y axis on the
electrode, have been determined. And 3 neurons in output
layer, which gives the and its corresponding

coordinates. In comparison with calculation results of 
different approaching ability and computing time, 10 neurons
of hidden layer are selected. The calculation configuration
and optimized electrode contour are illustrated in Fig.3 and
Fig.4. Optimization results are given in Fig.5 and Table II. 

)}(max{ rEf

YX ,

)(rE

maxE

TABLE II. OPTIMIZATION RESULTS

Optimized points  1      2      3     4      5     6    7    8
Original       572.0   572.0  572.0  572.0  572.0  574.0 576.5 581.0
coordinates X (mm)
Optimized   573.82  573.25  572.0 574.83 578.0 579.53 582.57 585.03
coordinates X (mm)

CONCLUSIONS

In this paper, the feed-forward ANN is applied to solve
the nonlinear oscillating function and to compute the inverse
problem of electric field. Taking the simulation error and
training time into account, there exists an optimum range of
number of the neurons on the hidden layer. The simulation
results show that the combination of ANN and
electromagnetic numerical analysis is feasible and valid. 
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Abstract – This paper presents the application of genetic algorithms in
the optimization of an offset reflector antenna. The antenna shape is
designed in order to obtain a uniform radiation pattern on the Brazilian
territory. Modified genetic operators are proposed with the aim to
increase the efficiency of the real coded GA used here.

INTRODUCTION

Genetic algorithms (GAs) are robust, stochastic-based
methods which can handle the common features of
electromagnetic optimization problems that are not readily
handled by other traditional optimization methods. An
overview of GAs for electromagnetic optimization can be
found in [1]-[2].

In the design of reflector antennas, the required radiation
pattern is generally obtained by using a set of feeds and a
parabolic reflector [3]. However this technique can be difficult
to implement and the structure is bigger and more expensive
than that using a single reflector with a single feed.

In this paper, a GA is used to design the shape of a single-
feed offset reflector antenna. The main goal is to obtain an
antenna whose radiation pattern covers uniformly the Brazilian
territory. After a simple revision about GAs, we propose
modified genetic operators with the aim to increase the
efficiency of the real coded GA.

GENETIC ALGORITHMS

Nowadays an important issue is related to the techniques
used to increase the efficiency of GAs. Particularly, the
strategy used in coding the variables is of crucial importance.
It is also very important to have an efficient exploration of the
search space (the space of all possible solutions). The latter
requires that the GA operators (selection, crossover and
mutation) be properly implemented.

We carried out some simulations in order to compare the
most used coding schemes: binary and real. We used the
Rastrigin function as test function and we used the same
procedures presented in [4]. The results obtained with real
coding were practically the same obtained using binary coding.
So, the coding scheme must be chosen according to the nature
of the variables and the programming language used.

Real coding is well suited to a large class of programming
languages and to problems with a great number of variables.
For this reason, we have developed genetic operators for a real
coded GA that allow an effective exploration of the search
space. We consider a case where the population is given by
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where each line represents an individual, nbpop is the
number of individuals of the population, nvar is the number
of variables of each individual and n represents the current
generation. In the evolutionary process, we group the
individuals in pairs and, for each pair, it is verified if
crossover will take place (with a probability Pc). If it is the
case, crossover is performed to yield two offspring
according to:

j,n
dirkcrossX

i,n
dirkcrossX

i,n
dirkcrossX ��� 1.09.01 +=+ , (2)

( ) jn,
dirkcrossX�in,

dirkcrossX�1
j,n

dirkcrossX ��� +−=+ 1 , (3)

where kcross is a random integer with uniform distribution
on the interval 1 ≤ kcross ≤ nvar defining the crossover cut
point [5]; α is a random multiplicative coefficient with
uniform distribution on the interval -0.1 ≤ α ≤ 1.1 [6]; and
dir is a random binary variable that indicates the direction in
which the crossover will be performed. It is equal to nvar if
the direction is from the cut point to the last variable and

equal to 1 in the other direction. Also, i,n
dirkcrossX � represents

a portion of the individual i containing all variables from
i,n

kcrossX to i,n
dirX (or from dir to kcross if dir < kcross). The

variables of the offspring not included in the interval
kross…dir are directly copied from the respective progenitor.
With this approach, known as biased crossover, one child
inherits most of its genetic material from one of the parents.
In this case, in order to improve the average fitness of the
population at each generation, it is necessary that

( ) ( )j,ni,n XfXf > , (4)

where f(⋅) represents the fitness function.
In a similar fashion, mutation is performed (with a

probability Pm) with the sum of a perturbation vector ( � ) to
the portion of the individual that will suffer mutation. In the
beginning of the evolutionary process the perturbation vector
is taken as:

n,i
dirkmutrange

	
.n,i

dirkmut

 �� 050= , (5)

where range is defined by the allowable limits of each
variable and β is a random number with uniform distribution
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on the interval 0 ≤ β ≤ 1. In this case, the mutation corresponds
to a maximum change of ± 5% of the range for each variable.
This amount of mutation allows an efficient exploration of the
search space without making the process too erratic. At the end
of the evolutionary process, the perturbation vector changes to

nbpop

nbpop

i

in,
dirkmutX�in,

dirkmut
�

∑
== 105.0

�
� .

(8)

In order to investigate the efficiency of the genetic operators
proposed here, they have been applied in the minimization of a
rotated Rastrigin's function [6] with 30 variables. The allowed
range for all variables corresponds to the interval
-5.12 ≤ X ≤ 5.12. The values give an objective function with
1030 minima. The global minimum for the rotated Rastrigin’s
function is X1…30 = 0. The simulation was run 100 times and in
all cases convergence has been attained in about 100
generations with a population of 200 individuals (convergence

criterion: 02.0
2

≤ix ). The improvement techniques

proposed in [4] were also used. We observed that convergence
was reached with approximately 200 × 100 evaluations of the
objective function for a search space containing 1030 possible
solutions. This demonstrates the great efficiency of the real
coded GA presented here.

OFFSET REFLECTOR ANTENNA

The offset reflector antenna to be optimized is a single-feed
and single-reflector structure with circular aperture. Its surface
is parameterized according to [7]:

( ) ( )∑∑
= =

+=
N

n

M

m

n
mnmnm tFsinnDnCtz

0 0

cos),(' φφφ , (10)

where t and φ are spherical coordinates of the paraboloid, Cnm

and Dnm are expansion coefficients and )(tF n
m is the modified

Jacobi polynomial.
The antenna analysis is performed with the Physical Optics

(PO) approximation [8] corrected by equivalent edge currents
(FR) [9]. Therefore, the total electric field radiated is:

frPOf EEEE ���� ++= . (11)

ANTENNA OPTIMIZATION

The optimization procedure has as goal to design a reflector
surface shape that produces a uniform coverage of Brazilian
territory [10] with maximum average gain. Table I presents the
maximum and average gain of the optimized antenna along
with the corresponding values of the parabolic antenna (used
as reference). Fig. 1 shows the footprints of the radiated field.

TABLE I. COMPARISON BETWEEN ANTENNAS

Reflector
Max. Gain

(dBi)
Average Gain

Gav (dBi)
Paraboloid 44.64 18.37
Optimized 39.13 30.74

Fig. 1 and Table I clearly show that the optimized antenna
gives a more uniform illumination with a higher average
gain over the covering area than that of the reference
antenna. The optimized antenna made it possible to obtain a
directive gain of 25 dB on practically all the Brazilian
territory and at least 30dB on 80% of it. Fig. 2 is a contour
graph showing the difference between the z-coordinates of
the optimized reflector and reference one. More results will
be presented in the extended version of the paper.

(a) (b)
Fig. 1. Radiation patterns (in dBi) for: (a) reference parabolic reflector and
(b) optimized shape.

Fig. 2. Difference between optimized and reference parabolic shapes.
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Optimization of radar cross section by a gradient method
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Abstract— A gradient method for radar cross section (RCS) optimiza-
tion is derived from Maxwell’s equations. The method uses the adjoint
problem and finds the derivatives of the RCS with respect to all design
parameters from a single solution of the scattering problem. In two-
dimensional test problems it converges with a small number of iterations
to shapes with strongly reduced RCS in specified angular intervals. The
optimal shapes have sharp corners in directions where the RCS is mini-
mized and corrugations. The corrugations can be suppressed by means of
penalty functions.

Keywords— optimization, radar cross section, gradient method, adjoint
equation

OPTIMIZATION PROBLEM

�
ITH few exceptions [1]-[3], optimization of microwave
devices has relied on evolutionary methods such as the

genetic algorithm. Here, we derive a gradient method, based
on the adjoint problem [4], for the minimization of radar cross
sections (RCS), and show that it is highly efficient.

First, consider a 3D scattering problem with an incident
wave �Ei � �E0 exp�� j�k0 ��r�� The mono-static RCS is �
4 �A��

2�E2
0 k2

0� where the scattering amplitude

�A �
k0

4

�
NT F

�
n̂� � ��E�� j�k0� ��E� n̂�

�
e� j�k0��rdS (1)

is computed on the Near-To-Far-field transformation surface,
and � refers to the back-scatter direction.

The incident wave is imposed on a Huygens surface S, so
that the electric field �E is the total field inside S and only the
scattered field outside. The incident field gives rise to sources
in the curl-curl equation for �E, which we write in weak form as

L��w��E� � L0��w��E��E��w��E0� � 0� (2)

where �w is a testing function,

L0��w��E� �

� �
��w � ��E� k2

0�w ��E
�

dv

�

�
�n̂��w� � � jk0r̂��E�dS (3)

describes the homogeneous system and

E��w��E0����E0 �

�
S
�n̂�� ��w�� j�k0���w� n̂��e� j�k0��rdS (4)

represents the incident wave.
We use methods of optimal shape design [4] to find how the

solution changes if the boundary of the PEC scatterer is dis-
placed by an infinitesimal distance in the outward normal di-
rection. The first order variation �E is determined by requiring

the weak form of the differential equation (2) to hold for �E� �E
in the modified geometry:

L0��w� �E� �

� �
��w � ��E� k2

0�w ��E
�

dS� (5)

Using (1) we find that the first variation of the RCS is

��E� �E��A�

�
��E2

0 k0 � c�c� (6)

Let �pE be the solution of the adjoint equation

L0��w��pE��E��w��A�

�
� � 0� (7)

which is the same scattering problem as �E, except that the in-
cident wave is �pE�i � �A�

�
exp�� j�k0 ��r�� Therefore, the adjoint

solution �pE can be constructed from solutions of the original
problem. This is because Maxwell’s equations are self-adjoint
and we consider backscattering.

If we choose �w � �E in (7), Eq. (6) gives the first order
variation of the radar cross section � L0��pE � �E��E2

0 k0 +
c.c. Therefore, (5) with �w � �pE gives

�
2

E2
0 k0

Re

�� �
��pE � ��E� k2

0�pE ��E
�

dS

�
�

which can be expressed in terms of the surface current and
charge densities on the PEC scatterer as

��
2k0Z2

0

E2
0

Re

�� �
�Jadj � �Jorig � c2

adj orig

�
dS

�
� (8)

The surface currents in the adjoint problem contain information
on how the surface currents in the direct problem contribute
to the radar cross section. The variation of the RCS can be
weighted with respect to angle of incidence and frequency in
obvious ways.

Similar formulas hold for scattering in 2D. For TM polariza-
tion, with an incident wave Ei �E0 exp�� j�k0 ��r�� we define the
scattering amplitude A � � 1

4

�
NT F� j�k0E � E� � n̂exp�� j�k0 �

�r�dl� and find the variation of the scattering length:

L ��
2Z2

0k0

�E2
0 �

Re

��
JadjJorigdl

�
� (9)

where Jadj � �A��E0�Jorig.
For TE polarization, with an incoming field Hi �

H0 exp�� j�k0 ��r�, and scattering amplitudeC �� 1
4

�
NT F� j�k0H�

H� � n̂exp�� j�k0 ��r�dl� we find

L ��
2k0

�H2
0 �

Re

�� 	
JadjJorig � c2

adj orig



dl

�
� (10)
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with �Jadj� adj�� �C��H0��Jorig� orig�.
Using the surface integrals for the RCS variation from a sur-

face displacement, we obtain the derivative of the RCS with
respect to any shape parameter by means of the chain rule [5].

RESULTS FOR A 2D TEST CASE

Coupled RCS and aerodynamical optimizations are in
progress, but here, we limit the scope to RCS optimization. We
have minimized the RCS of a PEC scatterer in the angular inter-
vals �� m� m�� � � m� � m�. The design parameters were
taken as the coefficients in a Fourier series for r� �, describing
the boundary of the scattterer, with the constant term fixed to
unity to prevent the optimization from shrinking the scatterer
to zero. As optimization routine, we have mainly used Mat-
lab’s lsqnonlin, which solves a least square problem by the
Levenberg-Marquardt method.

The surface currents are computed by a boundary element
code [6] that solves the 2D Complex Field Integral Equation
(CFIE) for both TM and TE polarization.

The shape derivatives in Eqs. (6), (9) and (10) involve
squares of the complex surface currents and vary twice as fast
as the incoming wave. For proper averaging, the angles of
incidence have to be resolved with a maximum separation of

� �8d� where d is the transvers extent of the scatterer.
We find that, even with sufficient averaging, the optimal shapes
contain oscillations, at about half the wavelength of the incom-
ing radiation. To remove such corrugations, we have added
terms penalizing boundary curvature to the goal function of the
minimization.
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Fig. 1. Evolution of the average RCS for TE (-o-) and TM (-) polarization in
0 � � �4 with the Levenberg-Marquart algoritm and a small penalty.

For moderately large objects (k0 � 4 ), the shape optimiza-
tion converges rapidly, see Fig. 1. The optimized shapes shown
in Fig. 2 tend to have large flat regions and sharp corners point-
ing in the directions where the RCS is minimized. This con-
forms with expectations from geometrical optics. When the
optimization interval becomes large, m �� 80o, the algorithm
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Fig. 2. Optimized shapes for some different widths of the reduction interval
for a relatively small scatterer, k0 � 4 .
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Fig. 3. RCS vs. angle of incidence � �0� �2� for the optimized shapes in Fig.
2. Generally, the algorithm reduces in the specified interval by increasing it
outside.

no longer produces sharp tips, see Fig. 2, and the RCS in the
forward direction � 0 increases, as shown by Fig. 3.

We conclude that the gradient method using the adjoint prob-
lem, combined with a suitable penalty term, is efficient for RCS
optimization. We believe that the method has great potential for
more general microwave problems.
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Abstract � A procedure to optimize the specific absorption rate in 
patient during hyperthermia treatment. is presented. It is based on a 
genetic algorithm coupled to a finite element formulation. The 
optimization is applied to real human body. 

INTRODUCTION

Hyperthermia is used in oncology treatment to treat 
localized cancerous tumours [1]. Its purpose is to heat (42-
44°C) the tumour while keeping the temperatures in healthy 
tissues at acceptable levels. The elevation of temperature is 
obtained by submitting locally the patient to a radiofrequency 
(RF) electromagnetic field. The Specific Absorption Rate 
(SAR) maybe related to the distribution of temperature in a 
first approximation. A 3D Finite Element (FE) formulation 
has been previously developed in order to calculate it [2]. It is 
directly written in term of electric field E. It is coupled to a 
first order Engquist-Majda absorbing boundary condition. 
Space discretization is performed using incomplete first order 
edge elements. The sparse complex symmetric matrix 
equation is solved using conjugate gradient solver with SSOR 
preconditionning. The formulation has been validated by 
comparison of calculated SAR distribution on a phantom to 
temperature measurements. 

All the success of hyperthermia treatment lies in the 
focalization of the heat inside the cancerous tumour. It is 
obtained by using several RF sources having specific phases 
and amplitude. In this paper, a tool to optimize the SAR 
distribution in the patient including the specification of 
constraints is presented. Optimization procedure is first 
presented. Results are then given for two types of applicators.  

OPTIMIZATION

Energy deposited into the part of the body to be heated  is 
accompanied by energy deposition into other regions. It is 
impossible to predict intuitively phases and amplitudes of the 
sources leading to the best focalization. A Genetic Algorithm 
(GA) is then used to optimize the SAR distribution [3]. 

Objective function 

Several Objective Functions (OF) have been tested. In this 
paper, two OF are presented. They are defined as the ratio 
between the SAR in the tumour and the SAR in healthy 

tissues (1) or in all tissues (2). The GA maximize the result of 
these OF in order to obtain maximum SAR in cancerous 
tissues and the minimun in other tissues. 
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Optimization Procedure 

For an hyperthermia system that consists of n applicators, 
each applicator contributes to a part of the total E field. The E
field distribution due to each source is first computed with the 
FE method, each source having an amplitude equal to 1 and a 
phase equal to 0. The GA modifies in a second step 
amplitudes and phases, and by application of the principle of 
linearity and the theorem of superposition, the corresponding 
E field distribution is obtained.  

On the other hand, several  constraints are prescribed for an 
optimal treatment: the SAR in tumour has to be close to 50 
W/kg, and  the total power absorbed by the patient has to be 
lower than 1250 W. 

MODELED DEVICES

Two types of applicators are studied. The first one (A1) is 
made of two waveguides filled with conducting water and 
radiating at 27.12 MHz (fig. 1). The second applicator (A2) is 
an Annular Phased Array (APA) made of a dielectric ring 
with four 110 MHz sources. A pocket of water (bolus) fills 
the space around the patient in order to avoid excessive 
heating at the skin level. For both devices, the patient model 
is created from 60 Computerized Tomography (CT) scans. 
The mesh is made of 203989 elements and 42089 nodes, 
leading to 261500 degrees of freedom. Electromagnetic 
characteristics of the media are obtained from [4]. 

Applicator 1

Applicator 2

Bolus

Patient

Fig. 1. Mesh of the waveguides applicator A1.
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Fig.2. APA applicator A2. Left: 3D mesh, right: location of the sources 

OPTIMIZATION RESULTS

The results of the optimization for applicator A1 are 
presented in Table I. Different configurations are compared, 
with only one source functioning (Source 1 or Source 2), with 
the two waveguides operating simultaneously with default 
adjustments (Default). A and �° denote respectively the 
amplitude and the phasis of the sources. The optimal 
configurations obtained with the GA for the two OF (1) and 
(2) are also presented (Optimal OF1 and OF2). Fig. 2 shows 
the SAR ratio between SAR in healthy tissues and in tumour. 
The SAR distribution on bone and tumour is presented in fig. 
3, for the default and optimal configurations (OF1 and OF2).
Table II gives the CPU times on a HP J5000 computer for the 
optimization procedure with the OF1 and the E field 
computation. 

Results of optimization for applicator A2 are given in 
Table III. Optimal results obtained with objective function 
OF1 are compared to those obtained with only one source and 
to whose obtained with all sources in phasis. 

TABLE III. OPTIMIZATION RESULTS FOR THE APA APPLICATOR A2 

 Source 1 Source 2 Source 3 Source 4 SARratio

A � ° A � ° A � ° A � ° A
Source 1 1 0       0.29 
Default 1 0 1 0 1 0 1 0 0.90 
OF1 13.1 185.4 33.7 246.4 2.9 0 8.0 108.2 2.25 

CONCLUSIONS

A 3-dimensional optimization tool based on a coupled 
GA-FE method has been developed for hyperthermia 
treatment. The developed model allows to obtain a better 
focalization of the SAR into the tumour. 
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TABLE  II. CPU TIMES FOR WAVEGUIDES APPLICATOR A1 

 CPU time (s) % 
Source 1 41 670 54 Electric fields 

distribution  Source 2 34 349 45 
Optimization 750 1 
Total 76 769 100 

TABLE I. OPTIMIZATION RESULTS FOR THE WAVEGUIDES APPLICATOR A1 

Configuration Source 1 Source 2 OF Ppatient Ptumour SARtumour 

A � ° A � °  W W W/kg 
Source 1 1 0 - - 1.30 213 1.62 7.5 
Source 2 - - 1 0 1.75 133 1.22 5.6 
Default 1 0 1 0 1.52 484 4.31 19.9 
Optimal OF1 1.30 0 2.99 235 2.30 1066 11.5 53.3 
Optimal OF2 1.18 0 2.71 235 2.03 878 9.51 43.9 
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